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Introduction and General Concepts

What are Transport Phenomena?

Transport phenomena, put simply, is the study of how certain things move. In BIEN
314, these things are momentum, seen in the fluid dynamics portion, and energy or heat,
seen in the heat transfer portion. However, the field extends beyond these. For example,
mass transfer will be taught in BIEN 340 and deals with the transport of “mass”, typically as
dilute solutes. In fact, you may have already seen transport phenomena of electrical
charges in circuits classes.

These things are grouped into transport phenomena because they behave similarly.
Take the example of heat and mass transfer. Let’s say | had a cup of tea with a sugar cube at
the bottom, and, as a perfectly normal and sane bioengineering student, | heated up my
cup of tea on a hot plate. Akind of “diffusion” happens for both sugar and heat as they
move from the bottom to the top of the cup through the random motion of water and sugar
molecules. Mathematically, the equations are also similar: Fick’s law of diffusion and
Fourier’s law of conduction are nearly identical. There are many other similarities that you
will see throughout the course, though of course each topic has its own quirks.

Fick’s law of diffusion Fourier’s law of conduction
dc dT
dy 1 dx
J: molar flux of species in y direction g: heat flux in x direction
c: concentration of species T: temperature
D: diffusion coefficient of species k: thermal conductivity

Basic Concepts and Definitions

This is a summary of basic concepts which are useful for this class. You’ve already
seen most of them in thermodynamics.

e System: portion of the universe we are interested in.
e Environment: rest of the universe.
e Boundary: interface between system and environment.
o Isolated system: no exchange of energy or matter between system and
environment
o Closed system: exchange of energy, but not matter between system and
environment



o Open system: exchange of energy and matter between system and
environment

e Property: a characteristic of a system.

o Intensive properties: independent of system size (temperature, pressure,
density, etc.)

o Extensive properties: dependent on system size and can enter or leave the
system (mass, heat, volume, etc.)

e Continuum: A body can be considered a continuum if you can treat it as being
made of a continuous substance rather than as a collection of discrete particles.
We want to treat bodies as continuums because dealing with atoms is hard.

e Equilibrium: no net exchange of mass, energy, or any other extensive property.
Homogeneous temperature and pressure.

Diffusive Transport

One of the main mechanisms for transport is caused by the random motion of
molecules. We’'ll refer to it as “diffusion”, even though it has many names depending on
the specific topic: for momentum transport, it’s related to viscosity; for heat transfer, it’s
called heat conduction; and for mass transfer, it’s called diffusion.

In all these cases, the quantity moves from a region where it is more “concentrated”
to aregion where it is less “concentrated” due to random thermal motion. Let’s take the
example of the cup of tea again, where the bottom of my cup is hot and the top is cold. Due
to random motion, the hot water molecules will move up and down the cup. Though some
molecules might return to the bottom, others will keep moving up, carrying heat upwards
with them. After some time has passed, the hot and cold water molecules will be in
completely random positions inside my cup, so the bottom and top will have the same
amount of hot and cold water molecules, such that the temperature of my cup is now
uniform. This logic applies to momentum and mass as well.

Mathematically, the equations for these diffusive processes look similar as well. To
start, we will briefly define flow rate and flux. The flow rate of a quantity X is the amount of X
that passes through an area A per unit time. The flux of X is the flow rate per unit area. Itis
typically a vector quantity, so flow rate and flux are related by a surface integral. Let’s take
volume as an example. The volumetric flow rate (Q,,) through a surface S of area A is related
to the volumetric flux (or simply velocity, ¥ ) through the equation



where 71 is the unit vector normal to the surface. If the flux is normal to the surface, then the
equation is simply

Qy = (v)A
where (v) is the average velocity.

In diffusive transport, flux is typically proportional to the negative gradient of some
intensive property, called potential. A constitutive relationship relates the flux of an
extensive property to the gradient of an intensive property. These constitutive relationships
typically have the following form:

. . . . . s §(potential)

Dif fusive flux in the x direction = (constitutive property) <— T)

Taking the example of heat transfer, we know that heat goes from regions with high
temperature to regions with low temperature, so our potential is temperature. We also
know that heat travels faster in materials with high thermal conductivity, which will be our
constitutive property. Putting it all together, we come back to Fourier’s law of conduction,
seen in the “Heat” column in the table below.

Table 1: Diffusive transport.

MOMENTUM HEAT MASS (BIEN 340)
FLUX x-momentum flux in Heat flux Molar flux
the y-direction q J
Tyx
POTENTIAL Velocity in the x- Temperature Molar concentration
direction T c
Ux
CONSTITUTIVE Viscosity Thermal Dif fusivity
PROPERTY U conductivity D
k
CONSTITUTIVE vy 6T éc
RELATION tyx = Ry 9=k5x J=D5;

Convective Transport

The other main method for transport is convective transport. Rather than being
driven by random motion, this mechanism is driven by the flow of fluid containing the
quantity, or bulk fluid motion. If | were to take my hot cup of tea and pour it into another
cold cup of tea, the heat in the first cup would be transferred through the bulk motion of tea
to the second cup.



Mathematically, since these are driven by fluid flow, the flux is generally the quantity

of interest per unit volume multiplied by the fluid velocity.

Convective flux in x direction = (quantity per volume)(fluid velocity in x direction)

Again, across different quantities, the equations look similar.

Table 2: Convective transport.

MOMENTUM HEAT MASS (BIEN 340)
QUANTITY PER Specific momentum Specific thermal Concentration
VOLUME DUy energy C
Py (T - TR)
FLUX pv2 pcy (T — Tr)vy Cv,



Dimensional Analysis

Buckingham Pi Theorem

Fundamental dimensions

A fundamental dimension can be thought of as a type of measurement. For
example, mass, length and time can be fundamental dimensions. On the other hand,
velocity can be obtained from other fundamental dimensions, specifically as
distance/time, so it wouldn’t be a fundamental dimension. Here is a table of fundamental
dimensions (and their units) for the International System Of Units (SI) system.

Table 3: Fundamental dimensions and Sl units.

Dimension Symbol Sl unit
Mass M kilogram (kg)
Length L metre (m)
Time T second (s)
Amount of substance N mole (mol)
Temperature © Kelvin (K)
Electric current I ampere (A)
Luminous intensity J Candela (cd)
(you will probably never use this)

Technically, we could choose different fundamental dimensions. For example, we
could decide that velocity and distance are fundamental dimensions, but time is not,
because it can be obtained as distance/velocity. However, this would just cause confusion.
The Sl system makes the most sense and is the easiest to use, so just use that one.

Definition and use

The Buckingham Pi theorem states that a function f of v variables x4, x5, X3, ..., X}

x1 = f(xg, o, xp)

can be rewritten in terms of p dimensionless variables {, 1T, ..., Ty called pi groups, which

are formed from the original variables:

Ty = F(nz, . np)

10



Note that these pi groups are NOT UNIQUE in general, so multiple sets of pi groups
are possible. The number of pi groupsis p = v — d, where v is the number of original
variables and d is the number of fundamental dimensions the problem has.

In short, using the theorem, we can reduce the number of variables of an
equation by the number of fundamental dimensions present. The important part is that
you do not need to know the function itself to use this theorem. This is useful for
experiments, since it allows you to reduce the number of variables to test. Very often,
problems in transport phenomena involve many variables and do not have simple
equations. Using this theorem, empirical relations can be found. A good example of where
Buckingham Piis used is in finding the heat transfer coefficient in the convective heat
transfer portion.

General procedure

1. Identify the v independent variables x4, x5, ..., x,, in the problem.

2. Listoutthe fundamental dimensions for each independent variable and count how
many fundamental dimensions d there are. You will have to make p = v — d pi
groups. It’s useful to make a table listing the dimension exponents for each variable.

3. Separate the variables into p dependent (excluded) variables and d independent
(core) variables.

e Your variables of interest should be in the dependent variables.
e Any already dimensionless variables should be in the dependent variables
(and will form pi groups on their own).
e Your independent variables should:
i. Contain all fundamental dimensions present in the problem.
ii. No two should have the same fundamental dimensions nor multiples
of the same fundamental dimensions (ex: can’t have length (L) and
area (L?)).
iii. Typically, but not always, there is one variable for a fluid property, one
for flow geometry, and one for flow rate.

4. Construct p dimensionless groups, each from one of the dependent variables and
all of the independent variables. A pi group should be of the form r; = xiyfyé’yg ves
where x; is one of the dependent variables, y, , 3 . are the independent variables,
anda, b, c, ... are exponents which have not been determined yet.

5. Findthe exponentvalues of the independent variables to make the group
dimensionless.

11



Simple example

An object of mass m is attached to a spring of stiffness k at a distance [ from its

equilibrium position. If we release the object, we wish to know the period t for the object’s
oscillation. The relation between variables can be expressed as:

t=f(mkl)

. There are v = 4 variables: mass m, stiffness k, distance [, and period t (variable of
interest).

. The dimensions are: dim(m) = M, dim(k) = MT~2,dim(l) = L,dim(¢t) =T

It sometimes helps to make a table for this step, which lists the exponents for all

fundamental dimensions of each variable:

Variable Time (T) Length (L) Mass (M)

mass m 0 0 1
stiffness k -2 0 1
distance l 0 1 0

period t 1 0 0

There are d = 3 fundamental dimensions: time, length, and mass, meaning there is

onlyp =4 — 3 =1 pi group.

3. The one dependent variable must be the period, as itis the variable of interest. The

other three variables are the independent variables. They encompass all
fundamental dimensions, and no two variables have the same (or multiples of the
same) fundamental dimensions, so we can proceed.

4. The pigroup will be m; = tm®kPI¢
5. Tofind the exponents the group must be dimensionless. Thus, we must find the

dimension of the pi group in terms of the variables a, b, c:
Dim(my) = (T)(M)*(MT~2)b(L)¢ = T1=2bpmatb]c
The group must be dimensionless:
Dim(m,) = T1-2bpqat+bjc — T0p070
Thus, we solve the system of equations:
1-2b=0

a+b=0
c=0

12




and we find thata = —%, b = %, ¢ =0.Ourpigroupism; = t\/z

m

. . . . k
We can use this to rewrite our original function to F <t\/;> =0, so t\[% = C, where

C is some constant. Thus, we know thatt = C\/%. The real equation for the period of

oscillation ofamasson aspringist = 2 f? so our analysis makes sense.

Another example

Determine the specific energy (energy per unit mass) lost due to friction Ewhena
fluid of density p and viscosity u goes through a rectangular conduit of length [, width w,
and aspect ratio a with average velocity v.

1. There are v = 7 variables: density p, viscosity u, length [, width w, aspect ratio a,
average velocity v, and energy loss E (variable of interest).
2. The dimensions are:

Variable Time (T) Length (L) Mass (M)
Density p 0 -3 1
Viscosity u -1 -1 1
Length [ 0 1 0
Width w 0 1 0
Aspect ratio a 0 0 0
Average velocity v -1 1 0
Specific energy E -2 2 0

There are d = 3 fundamental dimensions: time, length, and mass, meaning there
arep = 7 — 3 = 4 pi groups.

3. Finding the dependent and independent variables:
e Dependentvariables:
i. Specific energy lost due to friction is the variable of interest
ii. Aspectratiois already dimensionless
iii. Since length and width have the same dimensions, one will be
independent and the other dependent. Let’s choose length as the
dependentvariable.

13



iv. Asthefinalvariable, since both density and viscosity characterize
fluid properties, let’s split them between dependent and independent
variables. For the dependent variables, let’s choose density.

e Independentvariables:
i. Forfluid properties, let’s use viscosity.

ii. For flow geometry, let’s choose width

iii. For flow rate, let’s use average velocity.

4. mg = EutwPv, 1y = aptwPve, mp = lptwbve, n, = putwhve
5. We go through the pi groups one by one:

Dim(mg) = (LT 2) (ML AT 1)2(L)P(LT~1)¢ = T-2-a-cpMaj2-atb+c — 1

a=20
2—a+b+c=0

1 —2—a—-c=0
a=0,b=0,c=-2
ng = Ev2
Dim(rm,) = (MLIT"V)*(L)P(LT~1)¢ = T-¢-cMaL-a+b+c =1
—a—c=0
a=0
—a+b+c=0
a=0,b=0,c=0
Mg =0
Dim(m) = (LML T~)(L)P (LT 1)¢ = T-2cMe[1-a+b+c = 1
—a—c=0
a=0
1-a+b+c=0
a=0,b=-1,c=0
m =Ilw?!
Dim(np) = (ML 3)(ML T H)(L)P (LT )¢ = T-a-cpMlta)-3-a+tb+c — 1
—a—c=0
1+a=0
—-3—a+b+c=0
a=-1,b=1c=1

14



wv
n, = pu~twlv! = 'DT = Reynolds number

This means that:

Now, we could perform experiments varying the aspect ratio, length/width ratio, and

Reynolds number to find an equation for V—Ez

Scaling

Explanation and use

The Buckingham pi theorem is useful when the underlying equation is unknown.
However, a different problem can happen: the equation is known but is an unsolvable
monster. Take the Navier-Stokes equations: while they can describe the motion of
incompressible fluids in a wide range of cases, there is a million-dollar standing bounty to
anyone who can find whether a general solution even exists. Of course, in this class, you
will not have to solve million-dollar problems. But you will have to reduce complicated
equations to their simplest form. This is where scaling comes in.

You will often be able to make assumptions about the problem based on the scale
of things. For example, the length of a pipe might be much longer than its width, or the
Reynolds number might be small. Using scaling, we create dimensionless parameters from
the variables in the equation, to ensure they are of order 10°. We can then use our
assumptions to eliminate terms from the problem. It’s easier to understand with an
example.

Example

Let’s take a 1-dimensional steady-state heat transfer example. A hot liquid at
temperature T; enters a conduit of length [ with velocity v, and exits the other end at
temperature T,. The liquid has density p, viscosity u, thermal conductivity k, and specific
heat capacity c,,. The walls of the conduit are insulated.

Here, heat transfer occurs through two mechanisms. The first is convection, or the
bulk movement of hot liquid from one end of the conduit to the other. The second is heat
conduction or diffusion: heat moving through the liquid through random molecular

15



movement. We want to know under which conditions one mechanism can be ignored
compared to the other.

Logically, we could say that when the liquid is slow, diffusion would be more
important. After all, if the liquid were immobile, only diffusion would happen. Similarly, if it
were fast, convection would be more important. But we need to know fast compared to
what. If the velocity were 1 m/s, we would be unable to say whether that is fast or slow. This
is where scaling comes in.

The equation for this situation, which you will discover towards the end of the
course, is:

6T 5T
0= —pvaxa'F kﬁ

where T is the temperature.

The equation might look a little arcane for now, but what is important to understand

. 8T . 82T .
is that the pc, vy 5, [erm represents convection and the k 5.2 Llerm represents conduction.

To scale the problem, we must create nondimensional numbers for the variables v,,
T, and x. To do so, we need to divide them by some constant in the problem such that they
roughly are of order 10°. If the nondimensional numbers are of order 10°, we can ignore
them when comparing the scale of other terms.

For v,, we can take the average velocity of the liquid (v) as our denominator to
create the variable:
_ W
R
For T, we can create
T—-T,

T* =
T,—T

which varies from 0 to 1 between the entrance and the exit.
Finally, for x, we can simply compare it to the length of the conduit:

*

_x
T

Now, we can substitute them into the starting equation. To make this process
clearer, here are the substitutions for each variable.

16



v, = (V)v*
8T = (T, — T,)6T*, 6T = (T, — T,)5°T*
5x = 16x",6x2 = 126x*°
Now to substitute these into the starting equation:

(T, —Ty) 6T" +k (T, —T,) 6T
16 x* 12 §x*?

0 = —pc,(v)v*

_ pCp(Tz - Tl)(v) . oT* n k(TZ - Tl) 62T*
- l e 2 §x°
Rearranging:
pcyl{v) 6T §°T*

k| Sxt ox?

pcpl(v)

Let’s take a closer look at this term. First, this term is the Péclet number,

which is a BIEN 340 concept, but it compares convective and conductive transport, which
is what we are trying to do in this problem.

If the Péclet number is very small or approximately 0, the entire left-hand side of the
equation, the convection term, is approximately 0 and can be ignored. This is because the
entire v* g—; is of order 10° regardless, so multiplying something very small by ~ 1 will still
result in something very small, i.e. approximately 0. Then, in this case diffusion is much
more important. The equation becomes:
82T
6x?

which is much easier to solve.

On the other hand, if the Péclet number is very large, we move it to the other side.

o [ o1 \err
Vx| pe vy | 5x?
k

Since the Péclet number is very large, its inverse will be very small, so the right-hand
side of the equation, the diffusion term, can be ignored and convection is much more
important. The equation then becomes:

17



6T
0 =—pcyvn 3x

which is, again, much easier to solve.

Some tips:

n
e Dealing with derivatives: let’s take a* = %and b* = %. To scale the derivative zT:’ the
equation is:
6"a A S"a”
§bn  Bn§b"
Essentially, you can find the differentials and treat the derivatives as fractions when

you do substitution. You might make a mathematician angry, but it works.
e [fyou are dealing with multiple equations, you might have to find that one variable
scales with another and replace it in some other equation. For example, you might

va) va _ (vp) 8vp

S sa B 6b*.|nth|scase,you can say that

end up with an equation like

(vg)~ % (vp), and you can replace (v,) with %(vb) in other equations.

Scaling Navier-Stokes

Let’s scale the Navier-Stokes equation. First, the Navier-Stokes equation can be
written in different ways. The professor likely wrote the Navier-Stokes equation in the form:

6"3 - - 22 pud
p §+U'VU = uvV*v — VP + pg

where p is density, U is the fluid velocity vector field, uisviscosity, P is pressure, and ﬁ is
the acceleration due to gravity.

Here, the problem will be simplified a little. Only the x direction will be considered.
This makes the Navier stokes equation look like:

6vx+ 6v, 8%y 6P+
Post TPV sy TH sz " ax T PY

where v, is x-direction velocity.

In practice, the only difference is that V was replaced by % and ¥ was replaced by

v,. The process of scaling should be the same in either equation. The simplification is only
to make it easier to understand and use more familiar notation.

18



Next, we create our nondimensional parameters. We must create one for velocity
v,, time t, location x, and pressure P.

For velocity, we can scale it with the average velocity (v):
vx

K2

The position can be scaled according to some characteristic length L, which could

*

v

be the length of the problem. All that matters is that it is of the same order of magnitude as
the position x.

For time, we can consider the time it would take for a particle of fluid to cross the
. . L .. .
characteristic length, which would take about @tlme, and scale by this time scale. We can

expect the times we are interested in to be of the same order of magnitude as this time
scale.

t (vt
&
(v)
Finally, for pressure, there isn’t one always correct way to scale it. When inertial
effects are more important (turbulent flow), we can scale by kinetic energy per unit area

p(v)?.

t =

. P
 p(w)?
When viscous forces dominate (creeping or laminar flow), we can scale by @
. P _ PL
T op(v) T o)
L

This term might look random, but it comes from a little manipulation of the Reynolds
p{(v)L

number i and is related to viscous effects.
pv)L _pw)*> P

T O RO}
L L

To start, let’s consider the case where inertial terms dominate. Let’s substitute our
nondimensional numbers:
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(v) Sv* + o(oh (v)év*  (v)&%v*  p(v)? 5P" N
PL 50 TPV s TH 2 sz T T L sx ' PI
(v)
p{v)? sv*  p(v)*>  Sv* _ wv) 5%v*  p(v)? 6P*
L 6t L ° 6x 1% ox2 L ox'

+pg

Dividing everything by%v)z:
Sv* v p 8% 6P*+ gL
St Sx*  p(v)L &§x*% Sx*  (v)?

Notice that L is the inverse of the Reynolds number, which we will denote Re:

u
p{v)

Sv* Sv* 1\8%v* 6P gL
* + v* * = (_) 2 - * + 2
ot ox Re) §x**  6x*  (v)

The Reynolds number is the ratio of inertial forces to viscous forces. If inertial forces
dominate, as we have stated, then the Reynolds number is very large, so its inverse is very

2.9,%

small. Then, (R—le)% can be ignored. In this case, the original equation can be simplified

to:

6vx+ Svy 5P+
Pst TP sx T Tox T PI

Now, for the case where viscous forces dominate, we once again substitute our
nondimensional numbers into the initial equation:

(v) sv* vy ov* (v) §%v* @ SP*
L

pISt*+p(v)v L Sx* T L% sx? 5x P9I
(v)

p(v)? sv*  p(v)? *617*_,11(17)6217* ul{v) 6P*
L ot L U 6x 1% ox2 I2 ox"

R . ww),
Dividing everything by TR
p(v)L 6v* p(v)L  6v* &*v* 6P*  pl?
* + v * = *2 - * + g
u ot U ox*  Ox dx*  ulv)

Notice the Reynolds humber again:

Sv* TR Lov 8%v" GP” N pL?
st YV sk T ax? oxt ' p(wy?d

Re
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In this case, viscous forces dominate, so the Reynolds number is very small. Then,
the starting equation simplifies to:

0 5%v, 6P+
T Hsx2 Tex TP
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Fluid Dynamics

Fluids Under Shear

Broadly, fluids are liquids and gases which, as opposed to solids, cannot resist
shear stress applied to them. Let’s illustrate what happens when a fluid is under shear.

a b
Tyx Al(y+Ay) Tyx
— —
|
|
|
|
Ay I
‘T |
AX AX |
X

Fig. 1. Diagram of a fluid under shear [1].

Here, let’s imagine a fluid is between two plates, and the top plate is pushed to the
right, subjecting the fluid to a shear stress 7,,,.. The shear stress notation 7,,, means that
the stress is applied on the face normal to the y axis and acts in the x-direction. As a
reminder, shear stress is the shearing force divided by the cross-sectional area, or the area
of the top face. After a certain time At, this shear stress causes movement and
deformation of the fluid. The fluid moves to the right by a distance of Al, which is a function
which varies with respect to y. We denote the distance at position y by Al(y) and the
distance at position y + Ay by Al(y + Ay).

Importantly, we can relate the shear stress to the fluid velocity. First, shear stress is
proportional to the strain rate:

dy
T:ME

Al(y+Ay)-Al(y)

where p is viscosity and y is the shear strain, or the angle tan(y) = Ay

For small angles, tan(y) = y, so:
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_Al(y + Ay) — Al(y)
Yy = Ay
Since distance is the product of velocity and time, we can replace Al(y) by v, (y)At,

where v, (y) is the x-direction velocity of the fluid at position y. We can do the same for
position y + Ay.

_ O+ ay)A - v (AL (v + Ay) — v ()
"= Ay - Ay

If we assume that Ay is very small and take the limit as Ay — 0, the fraction
becomes a derivative:

= lim
14 Ay—-0

v+ Ay) —nG)) A
Ay d

y

. dy . . —
We now have an expression for y. Now we calculate d—’; using the limit definition of

derivative, remembering that y at time 0 was 0.

dv,
dy yt=aD-yt=0) dy 270 dy,
at At B At Cdy

d - . .
=% ) We can putitinthe original equation to get:

So we know that X _
dt dy

_dy  dvy
Tyx _HE_HE

What this shows is that the shear stress is directly related to the velocity gradient of
a fluid. We have proven our constitutive relationship, Newton’s law of viscosity.

Momentum flux and Conventions

The reason this velocity gradient develops is due to the random motion of
molecules. You can imagine the fluid as being made of multiple layers stacked on top of
one another. The layer of molecules in contact with the top surface will move at the same
velocity as the top surface, and the layer of molecules in contact with the bottom surface
will have the same velocity as the bottom surface. Let’s imagine that the bottom surface
and thus bottom fluid layer have no velocity, while the top surface has some velocity. Fast
molecules will then diffuse through the lower layers, bringing the average velocity of the
layer up. Meanwhile, slow molecules from the bottom layers will diffuse upwards, bringing
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the average velocity of those layers down. After a certain amount of time, this will create a
stable velocity gradient, as the figure below shows.

position
Yy

R

increasing
time

.: =

velocity
Fig. 2. Developing velocity gradient [1].

This diffusion of fast and slow molecules creates a momentum flux. This
momentum flux is equal to the shear stress applied to the fluid, so we already have a
governing equation for it:

dv,
momentum flux = 1,, = _HE

Two sign conventions exist. In this course (unless it has changed) you will use the
convention that shear stress is positive when going towards the right (positive x-
direction) on the bottom face and towards the left (negative x-direction) on the top

. e . . . d
face. If the shear stress is positive, it will create a negative velocity gradient (di; < 0) and

a positive momentum flux going towards the positive y-direction.

, —"x

Chemical y 1

Engineering molecular flux
positive shear y| « mon(')lfentum
stress produce_s: i the velocity
negative velocity X directi
gradient & y-direction duy
positive d 0
momentum flux Tyx » Pyly = Tyx y

Fig. 3. Sign convention [1].
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Rheology

A Newtonian fluid’s viscosity is not affected by shear rate. However, not all liquids
behave so nicely. For example, ketchup is shear-thinning: it becomes less viscous when
higher shear stress is applied to it, for example by shaking or hitting the bottle. For non-
Newtonian fluids, Newton’s law of viscosity can still be used, but instead of using a
constant viscosity i, we need to use an apparent viscosity 77(y), which is a function of the
shear strain rate.

Fluid models

Power law model

n—-1 n-1
dv, dv,

dv, —K|

= — K s |n—1
& V4!

Tyx = —

e n:power law index
o depends ontemperature and pressure
o 0<n<1, pseudoplastic (shear thinning)
o n>1, dilatant (shear thickening)
o n=1, Newtonian

e K:flow consistency index

Bingham fluid

Bingham fluids are Newtonian fluids with a yield stress. Below the yield stress 7,
they act as a solid, but they act as a Newtonian fluid with viscosity u above the yield stress.

An example of a Bingham fluid is toothpaste: if you don’t squeeze the tube, it
doesn’t flow out at all, even under the effect of gravity. This is because gravity doesn’t
cause enough shear to overcome the yield stress.

. dvy
lf|Tyx| S'l'y, E: 0

dv, dv,

Tyx ry+,u(—dy>, E<0
dv, dv,

Tyx ry+u( dy)' dy>0



Casson fluid

This model also has a yield stress but is also shear thinning.

if |tyx] <7y, ——=0

dv, dv,
1/’Z'yx=S —E'F Ty, E<0

dv, dv,
,/—Tyx=5 E'F Ty, E>0

e Sisamaterial property with unitsvPa-s = /%

Herschel-Bulkley Fluid

It combines Power law fluid with a yield stress.

. dvy
lf |Tyx| < Ty, E =0
dv,\" dv,
Tyx_Ty-I_K(_dy) , E<0
dv,\" dv,
Tyx =TTy (dy)' ay 0

Blood Rheology
Blood viscosity depends on protein concentration, hematocrit, and vessel radius:

e [Effect of proteins: Higher protein concentrations increase viscosity.
e Effect of red blood cells:
o Higher hematocritincreases apparent viscosity

o Higher sheer rate decreases apparent viscosity
= Thisis because at high shear rates, red blood cells start deforming,

while at low shear rates, red blood cells start aggregating.

o Smaller conduit radius decreases apparent viscosity
= Thisis because of the Fahraeus-Lindqvist effect.
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The Fahraeus-Lindqvist effect is caused by an effective decrease in blood
hematocrit due to the lower capillary radius. Let’s take the location of a red blood cell to be
its center. Ared blood cell could not be located right at the wall of the capillary, because it
simply wouldn’t fit: the red blood cell has a certain radius which can’t overlap with the
capillary wall. So the region within a red blood cell radius of the capillary wall is completely
free of red blood cells. This means that the hematocrit (H) of blood in the capillary can be

expressed as:
o= {HO, r<R-R,
L0, r>R—-R,
where 7 is the radius in the capillary, H, is the hematocrit of free blood, and R, is the red
blood cell radius.

Since the hematocrit of the capillary is lower, the concentration of red blood cells
upstream and downstream of the capillary are higher. To avoid creating a bottleneck and
delivering less red blood cells downstream, the red blood cells must go faster, reducing

apparent viscosity.

Constitutive law for blood
Blood follows the Casson model for low shear rates and the Newtonian model for high

shear rates.

Newtonian

1.0

112 (dynes/cm?)1/2
N
o

01.0 5.0 10.0 15.0 20.0

1,1/2(3—1/2)

Fig. 4. Constitutive law for blood [2].
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Boundary conditions

To solve differential equations, boundary conditions are needed. Here are useful
boundary conditions that you should know.

Solid-liquid interface (no slip)

We assume that the fluid layer in contact with any solid adheres to it, thus has the
same velocity as the solid. If the solid is immobile, so is that layer of fluid.

Vx fluid = Vx,solids at interface
Interface between immiscible liquids
At the surface between two liquids, velocity and shear stress are equal.
Vy fluid 1 = Vx fluid 2» Tyx fluid 1 = Tyx fluid 2» at interface
Liquid-gas interface

Gas does not apply any shear stress on a fluid, because the viscosity of a gas is
much smaller than that of a liquid.

Tyx = 0, at interface
Symmetry

If the geometry and forces applied allow it, the velocity can be symmetrical around a
centerline. This means that the velocity gradient is 0 at that centerline.
OV,

Wh:o =0

Macroscopic Approach

When using the macroscopic approach, we generally apply conservation laws to the
entire system. We don’t really care about velocity gradients, only what comes in and out of
the system. We can apply conservation of mass, momentum, or energy to the system.
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Conservation of mass

When to use
Conservation of mass is the easiest method to apply, but the most limited. Itis

useful when all we care about is what goes into and out of the system. It cannot deal with
forces, pressure, or friction.

General equation

From conservation of mass, we know that:

{Rate of accumulation of } _ {rate mass enteTS} {rate mass exits}
mass in the system the system the system

In a system, mass can only enter or exit through inlets, outlets, or by seeping
through the walls if they are permeable. For now, we’ll use a system with only one inlet and
outlet to keep things simple. For example, a system can look like this:

dm

dt = Wyau + Win — Wour

Wyall

Fig. 5. Diagram of conservation of mass [1].

where m is mass, t is time, and w is the mass flow rate through the walls (if they are
permeable) and through the inlet and outlet.

We can obtain the mass by integrating the density over the entire volume of the
system:

where p is the density and V is the volume of the system.

We can obtain the mass flow rates by integrating the mass flux over the surface area
of the walls and inlets.
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Wwatt = — f (pﬁ) -ndS

Win = fpinvindA

where v is the velocity, S is the surface area of the wall, A is the surface area of the inlet,
and 71 is the outwards unit vector normal to the surface of the wall. Note that the negative
sign is present because the unit vector points towards the outside; if it pointed inwards,
there would be no negative sign.

So the general equation for conservation of mass is:

d
dt,f pdV = j(pv) nds + jplnvlndA jpoutvoutdA

Aln Aout

Assumptions

Assumption: uniform density across inlet and outlet areas.

This allows us to take the density out of the derivative.

Win = .I- PinVindA = Win = pin f VindA = pin(vin>Ain
Ain Ain
where (v) is the average velocity.

The equation then becomes:

d
dt_]- pdV = f(PU) nds + pm(vm>Am pout(vout>Aout

Assumption: well mixed, uniform density in the system, and uniform density across inlet
and outlet areas.

This simplification allows us to say that:
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d > —
E (pV) = - f (pv) ‘ndS + pin(vin>Ain - p(vout)Aout
S

Assumption: incompressible fluid (constant density).

The equation becomes a conservation of volume equation, since we can take
density out of the equation.

dV > -
E = QV,Wall + QV,in + QV,out =—]|v-ndS+ (vin>Ain - (vout)Aout

S

Assumption: steady state flow.

If the system is at steady state, nothing changes with time, so the left side of the
equation becomes 0.

dm

E =0 = Wyau + Win — Wour

Assumption: no seepage through walls (impermeable walls).
This allows you to remove the wall term, obtaining:

dm
E = Win — Wout

To keep things simple, we already made the assumption that there only was one
inlet and outlet. If there are multiple inlets and/or outlets, add them together:

num. of inlets num. of outlets
dm
dt = Wyau t+ Z Win,i — Z Wout,i
i=1 i=1

You will typically be able to assume that there is uniform density across the inlets
and outlets, and that the walls are impermeable. Then, the equation you will usually start
with is:

d num inlets num outlets

m

E = Z p<vin)Ain - Z p(vout>Aout
i=1 j=1
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Conservation of momentum

When to use

Conservation of momentum is most useful when dealing with forces. If the
question asks for the forces exerted by the walls, that’s a dead giveaway that you should
use conservation of momentum. It can also deal with pressure and gravity. It can’t really
deal with friction very well, except for frictional forces.

General equation

Conservation of momentum starts similarly to conservation of energy:

{Rate of accumulation of

rate momentum rate momentum .
} _ rate of productlon}
momentum in the system)

enters the system exits the system} + {
, , of momentum
by convection by convection

Momentum is the product of mass and velocity, meaning that:
p=mv=pVv
where p is momentum, m is mass, v is velocity, p is density, and V is volume.

For the rate of accumulation of momentum, we integrate the momentum per unit
volume over the volume of the system:

{Rate of accumulation of } _ d_ﬁ _ iJ’ 54V
momentum in the system) dt dt va

For the rate momentum enters or leaves the system by convection, we integrate the
momentum flux over the cross-sectional area of the inlet or outlet. Momentum flux is the
product of velocity and mass flux:

rate momentum
{enters the system} = f pvidAé
by convection A

where € is the unit vector in the direction of velocity and A is the area of the inlet or outlet.

Momentum can be generated by applying an external force to the fluid. Three forces
are relevant: gravity, the force exerted by the fluid on the system walls, and pressure at
inlets and outlets.

Num inlets Num outlets

} = ZF = mg) - }_?) + Z fpinletdAé) - Z fAPoutletdAé)

{rate of production
A

of momentum

where R is the force exerted by the fluid on the system walls (inverse the sign for the force
exerted by the wall on the fluid), g is the acceleration due to gravity, and P is the pressure.
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Putting everything together:
N num inlets num outlets
@=ij vdV = Z f vidAé — Z f v2dAé+mg —R
dt _ dt VP AP AP g

Num inlets Num outlets

+ z fpinletdA €— z fpoutletdA é
A

A
Assumptions

Assumption: you will almost always assume that density and pressure are uniform at
entrances and exits. If density is uniform at the inlet:

fpvsz é= pfvsz é = p(v?)Aé = pK,(v)?Aé
A A

where (v?) is the average square velocity and (v) is the average velocity.

Note that, in general, (v?) # (v)2. However, (v?) is really hard to work with. This is
why we use the constant K. By definition:

(vk)

Kie = o

The value of K depends on the geometry of the conduit and the flow regime, and will
usually be given in the problem. Usually, K is 1 for turbulent flows.

If pressure is uniform at the inlet:
fpinletdA €= PinletAinleté
A

Putting everything back together, this is the equation you will usually start with:

di num inlets num outlets
p 2 — 2 — - =
T Z (pi K2 V)" + P))Aje;, — Z (ijzj(v)j + Pj)Aje] +mg—R
i=1 j=1
Assumption: steady state:
dp
— =0
dt
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Conservation of energy

When to use

Conservation of energy is the most involved method but is useful when friction has
to be taken into account.

General equation
As always, we start with the conservation statement:

{Rate of accumulation of } _ { rate energy } {rate energy} {rate of production}
energy inthe system J  lenters system exits system of energy

For energy accumulation in the system, we can integrate the specific energy (energy
per unit mass) over the mass of the system.

{Rate of accumulation of} d j Edm
S de ),

energy inthe system -

where t is time, m is mass, and E is specific energy.

Specific energy can be divided into internal energy, kinetic energy, and potential
energy:

E=U04K+®
N . v? -
U =c,(T —Tg), K=7, ® = gh

where U is specific internal energy, K is specific kinetic energy, ® is specific potential
energy, ¢, is specific heat capacity, T is temperature, Ty is reference temperature, v is
velocity, g is gravitational acceleration, and h is height.

For energy entering and leaving the system, we have to consider both the heat
added to the system through conduction and radiation, and the heat added through
convection. Energy flux is equal to the product of mass flux and specific energy. We can
use the surface integral of energy flux over the surface area of inlets and outlets to obtain
the energy flow rate due to convection.

¢ num inlets num outlets
rate energy rate energy} iy . .
{enters System} N {exits system) — Qs + Z A_EipividA N Z A_EipividA
i i i i

where QS is the heat added to the system through conduction and radiation and p is
density.

We can also split the specific energy into its components:
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Eip;v;dA = f

Aj

2

|

Finally, though energy cannot truly be “created”, energy can be added in our system
through two ways. First, heat can be generated in our system through chemical reactions,
viscous heat dissipation, electrical heating, and so on; the energy was already present, but
wasn’t taken into account in the equation.

v
(Ul +—+ CD,-)p,-vidA

i

Second, the system can do work on its surroundings. This includes shaft work and
friction work at the inlets and outlets. In addition, since work is the product of force and
displacement, it follows that, if force is constant over time:

Loy =L ran) = F*  py = pa
dt T AT g T =AY

where W is work, F is force, Ax is displacement, and v is velocity.

This means that the pressure in the inlets and outlets exert work on the system.
Thus:

. num inlets num outlets
{rate of production

Of energy } = Qgen - VVS - Wf + Z LipividA - Z LipividA

L

where Qgen is the heat generated by chemical, electrical, viscous, and other phenomena,
WS is the shaft work done by the system on the environment, Wf is the frictional work at the
boundary done by the system on the environment, and P is pressure.

Putting everything together:

num inlets 2 num outlets
dE —~ V; —~ Pi ~ V; —~ i
E: Z N UL+7+CDL+; pividA_ Z N 1+7+¢1+; pividA
i t i t
+Q5+Qgen_m_wf
Right away, we’ll make an assumption to get rid of these ugly integrals:

Assumption: uniform density, pressure, temperature, internal energy, potential energy over
cross section of inlets and outlets.

dE ) ) . , _
E:Qs-l'Qgen_M[s_Wf-l' Z Wi<UL+




where w is mass flux.

We can also use the K (remember K; = % ) to simplify the equation:

num inlets

dE 0 K3{v)? . P
QS+Qgen W Wf+ z +T+Cbi+;

num outlets

_ Kg(vp)r P

Engineering Bernoulli

Through a series of assumptions, we can come to an “Engineering Bernoulli”
equation. We will make these assumptions often, so it is useful to have an equation
directly.

Assumption: isothermal, incompressible fluid, no chemical reactions (or radioactive
decay, electrical heating, etc.) or heat through surfaces. Also, internal/potential energy and
pressure are uniform across cross-section, as before.

This allows us to remove the internal energy U and heat added through conduction
Qs terms. In addition, the Qgen term now only represents viscous heat dissipation, or
friction loss, and will be replaced by Ej,.

We obtain:

num inlets num outlets

dE K (vp)? . P Ky{v)> . P
— =W~ Ey + Z ( +Or ) - Z wi(Zg Bk

i
where Ey, is the rate at which mechanical energy is converted to heat by viscous
dissipation, or friction loss.

Assumption: steady state ( % = 0), single inlet and outlet, in addition to the previous

assumptions.

Note that, by conservation of mass, if there is a single inlet and outlet, the mass flux
at the inlet and outlet must be equal.

W, E, 1 (Piyy — Poyt)
WS + WV = E (K3in<vin)2 - K3out(vout)2) + g(hin - hout) + — ow
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This is the engineering Bernoulli equation. We can further simplify it into the
“normal” Bernoulli equation you might already know by ignoring viscous dissipation and
shaft work.

Assumption: no shaft work, negligible friction (inviscid fluid with negligible friction), in
addition to all previous assumptions

In this case, since the fluid is inviscid, thus has a viscosity of zero, the velocity
profile will be flat, so K; will be 1. In addition, no viscous dissipation will occur, so E}, will be
0.

(vin)z Pin (vout)2 Pout
>+ ghin T +gh0ut+7

The Bernoulli equation has limited use because of the inviscid fluid assumption. You
will most often use the engineering Bernoulli equation, in which the assumptions are more
reasonable. Still, to use the equation, we need to be able to find this E}, term.

Friction loss

The frictional force can be expressed as:

Fo = fKA = f5 (o) (RuL)

where F, is the frictional force, f is a unitless friction factor, K is kinetic energy/volume, A is
the characteristic area which is the surface area in contact with the fluid, p is density, v is
velocity, P, is wetted perimeter (perimeter in contact with fluid), and L is the length of the
conduit.

To find the frictional force, let’s use conservation of momentum, but with only one
inlet and outlet of the same size and at steady-state in the conduit below.

Fig. 6. Diagram of a cylindrical conduit with one inlet and one outlet [1].
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Because of these assumptions, from conservation of mass, we know that the
average velocity at the entrance and exit must be the same. Thus, using conservation of
momentum at steady state, we only need to take pressure, gravity, and frictional force into
account:

d -
d—IZ =0=P,A; — Pyy:Ac. + mgsinf — R
R=F,= (Pin - Pout)Ac + pAcLsin6 g = (Pin - Pout)Ac + pAc(hin - hout)g

F = Ac((Pin - Pout) + p(hin - hout)g)

where p is momentum, t is time, P is pressure, A, is cross-sectional area of the conduit, m
is total fluid mass, g is gravitational acceleration, 8 is the angle of the conduit, R is the
force applied by the walls on the fluid which is the same as the frictional force Fy, L is the
length of the conduit, h is the height of the inlet and outlet, and p is density.

Now we use the engineering Bernoulli equation in this same situation:

E (P, — P,t)
WV = g(hin - hout) +l—out

where Ej, is the rate at which energy is converted to heat by viscous dissipation, or friction
loss, and w is the mass flow rate.

Notice how similar it is to the equation we obtained for F), using conservation of

momentum. In fact, we can divide F;, by pA_ to find i}—"

Fk (Pi _Pout) EV

= + (hin — hour)g = —
PAC p mn outg w

We can conclude that:

B, R [3(@)®,0)

w  pA, A,

To simplify this, we can use the hydraulic diameter:

b _ YA
h_PW

where Dy, is the hydraulic diameter, A, is the cross-sectional area, and B, is the wetted
perimeter. If the conduit is circular, then the hydraulic diameter is simply the diameter of
the pipe.
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Replacing into the equation:
E, L /1
— = 4f— = 2)
w =Y (2 )

Now we need to find this friction factor f. First, however, we must determine if we
can ignore entry effects. Typically, there is a region close to the entrance where the velocity
profile has yet to develop, called the hydrodynamic entrance region. This may cause
additional friction loss. This effect is negligible for long enough conduits. In addition, itis
usually very short and thus negligible if flow is turbulent.

In order to ignore entry effects, in laminar flow:

L>02R
d . €q

where L is the conduit length, d is the conduit diameter, and Re, is the Reynolds number
with the diameter as the characteristic length. The entrance length can also be calculated
as:

L 1
Ee = [(0.619)1° + (0.0567Re ) °]T6

where L, is the entrance length.

The friction factor depends on the conduit geometry and Reynolds number.
Depending on the case, you might have to use different tables.

Case: laminar flow in a circular conduit, entrance effects can be ignored

In this case, the friction factor can simply be calculated as:

16
N Red

f

Case: laminar flow in a circular conduit, entrance effects cannot be ignored

Use the following graph:
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Fig. 7. Friction loss in circular tubes with entry effects [1].
“Poiseuille flow” represents the case in which entrance effects can be ignored.
Case: nonlaminar/turbulent flow in a circular conduit

In this case, the roughness of the conduit will be important. Simply use the Moody

diagram.
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Fig. 8. Moody diagram [1].
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Case: laminar flow in a noncircular conduit
In this case:

_ 12uLA(v)
V'™ pBd3M,

where p is viscosity, B and d are geometric factors, and M, is a dimentionless coefficient
obtained from the graph below.
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Fig. 9. Values of M, for different conduit geometries [1].

Alternatively, the resistance to flow can be used, which is calculated as:

T
I~ Bd3M,

where Rf is the resistance to flow through the conduit. If the conduit is circular, then

8uL
Rr = re

where R is the conduit radius.
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This resistance can be used to easily find the volumetric flow rate through a conduit:

AP

Qv =%
Ry

More information in the electrical circuit analogy section.

To close the topic of friction loss, we must consider fittings, which can be
expansions or contractions of the conduit, elbow joints, orifices, junctions, etc. These
introduce additional friction loss. We use a friction factor K,,,:

E
K, = _v
2

The velocity is always taken downstream of the fitting. This friction factor can be
obtained from tables. We then add up all the friction loss terms from all the conduits and
fittings to obtain the total friction loss.

num fittings num conduits

E 1 L; 1
v = Z Kw,i E(vout,i)z + z 4‘f} D_,jjz(vjf

W r} 3
i=1 j=1

External flow

Fluid movement past a stationary object creates drag. This drag force has two
components. Frictional drag is caused by the shear stress applied by the fluid on the object
due to the velocity gradient of the fluid (think of Newton’s law of viscosity). Form drag is
caused by pressure differences creating a net force acting on the object. The pressure
difference can be between the region upstream and downstream of the object, or it can be
between the top and bottom of the object, in which case the object will lift.

To derive the drag equation, we can use the frictional force equation again:
1
F, = fKA = Efpva

where F), is the frictional force, f is a unitless friction factor, K is kinetic energy/volume, A is
the characteristic area, p is fluid density, and v is velocity.

Since we are dealing with external flow, the relevant velocity and area will change.
The relevant area will be the frontal area of the object, or the cross-sectional area of the
object when looking at it in the direction of fluid flow. Also, we will take the velocity to be
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the fluid velocity far away from the object. Finally, the friction factor becomes a drag
coefficient Cp. The force of drag then becomes:

1 2
Fp = ECDpvooAc

where Fj, is the drag force, Cp is the drag coefficient, v, is the velocity of the fluid far away
from the object, and A, is the cross-sectional area of the object.

In the case of laminar flow past a stationary sphere, the drag coefficientis:

24 24u
CD = R =
ep;  PVoDs

where Dy is the diameter of the sphere and p is fluid viscosity.

Replacing into the original equation, we obtain Stokes’ law:

F _1( 24,u) 2(nD5>_3 b

Fp = 3nuDsvy,
If the sphere is moving, you can simply take the difference between sphere and fluid

velocity.

Fp = _37TMDS(US - voo)

Compliance

So far, we’ve dealt with rigid conduits, but some conduits (like blood vessels) can
stretch or collapse depending on the pressures applied to them — a concept called
compliance. To quantify this, let’s first define the transmural pressure as the difference
between internal pressure inside the conduit and external pressure:

Py =P —P,
where Py, is transmural pressure, P is internal pressure, and P, is external pressure.

In general, when transmural pressure is positive, the cross-sectional area of the
conduit increases, while when it is negative, the cross-sectional area of the conduit
decreases (or collapses). We can then define the compliance of the vessel as the rate of
vessel volume change depending on transmural pressure:

o dv
~ dP,,
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where C is compliance and V is vessel volume.

Let’s relate this to conservation of mass. We know that if fluid density is constant,
conservation of mass basically becomes a conservation of volume:

num inlets num outlets
av 0 Z 0
_— V,' —_ V, .
dt : ‘ : ’
i=1 j=1

where Qy is the volumetric flow rate at the inlets and outlets and t is time. Note that we are
ignoring any flow through the walls.

Now, if we treat the derivative as a fraction, and using the definition of compliance:

dv aV dPuy, CdPtm B (dP dPe)

dt _dp,, dt = dt dt  dt

We can combine the two equations:

num inlets num outlets
dv  _dP,,
T ) e )
i=1 j=1
num inlets num outlets
dP dP,
C (E_E> = Z Qv — Z Qv,j
i=1 j=1

which allows us to relate compliance, internal and external pressures, and flow rates.

Electrical Circuit Analogy

As stated in the introduction, the movement of charges in an electrical circuitis part
of transport phenomena. In fact, an electrical circuit and a network of pipes can look very
similar and, mathematically, behave very similarly.

In an electrical circuit, charge is transported through electrical wires, creating an
electrical current, driven by a difference in electrical potential. This leads to the following
equation:

AV

I
R

where I is current, AV is the electrical potential difference, and R is electrical resistance.
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We can relate this to fluid flow. In this case, fluid is transported through a conduit,
creating a volumetric flow rate, driven by a difference in pressure. This leads to the
following equation:

AP

Qv =—
R¢

where Qy is the volumetric flow rate, AP is pressure difference, and Ry is resistance to flow.

The equation holds as long as entry effects can be ignored. In electrical circuits, the
wire resistance is usually ignored, but the resistance to flow of conduits is usually
significant. As seen previously, for laminar flow in circular conduits, the resistance can be
calculated as:

_ 8uL

Rf T R4
where u is fluid viscosity, L is the conduit length, and R is the conduit radius.

For noncircular conduits, the equation is:

o 120l
I~ Bd3M,

where B and d are dimensions of the conduit and M, is obtained from Fig. 9.

This means that conduits in parallel and series can be treated as resistors in parallel
and series:

Parallel Series

num conduits num conduits

1 _ Z 1 R = Z R
R, Rf; T 1

i=1

where R; is the total resistance.

This can be used to easily deal with complex networks of conduits.

Example

A device is composed of a 50 cm long, 10 cm diameter circular pipe which splits
into ten 50 cm long, 1 cm diameter circular pipes. The pressure difference between the
inlet and outlets of the device is 100 Pa. What is the total volumetric flowrate of water
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passing through the device if it has constant density 1000 kg/L and a viscosity of 0.001 Pa s.
Ignore the friction at fittings and bifurcations, and any entry effects.

We can treat this as a circuit looking like this:

$ 2223

Fig. 10. Equivalent circuit with resistances in series and in parallel.

The resistance in the 10 cm diameter pipe is:

R. = 8uL _ 204Pas
f = TR4 m3

The resistance in one of the 1 cm diameter pipes is:

Pas
Ry = 2040W
Then, the total resistance is:
Pas 1 Pas
R, = 204 T+ =408—3
m 1 m
10| ———s—
2040295
m
Then, we can find the volumetric flow rate:
_ AP _ 100Pa —0 245m3
VIR, T goaPas et TS

408W
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Shell Balance

While the macroscopic approach is good enough to look at what goes into and out
of the system, it can’t deal with spatial variations inside the system itself. For example, it
can’t be used to obtain the velocity profile of a fluid. On the other hand, the method of shell

balance is well suited to dealing with 1 dimensional steady-state flow problems where

spatial variations are important. It is usually used when the shear stress distribution,

velocity distribution, or flow rate are needed.

The basic idea is similar to the idea for a derivative: we take a very small shell, such

that everything is uniform within this shell, and use conservation of mass and momentum
on this shell. Then, we take the limit as the volume of the shell approaches 0. This will give

us derivatives with respect to x ory for shear stress or pressure, from which we can obtain
the velocity gradient using a constitutive relationship.

General method

1. Define a shell.

The shell is a small region of the fluid of interest. When working is cartesian
coordinates, it is a small rectangular prism, while it should be a hollow
cylinder (or prism with an annular base) when working with cylindrical
coordinates.

2. Perform a mass balance.

Using conservation of mass, list mass entering and leaving shell.
Divide by the shell volume and take the limit as the shell volume goes to zero.

3. Perform a momentum balance.

Use conservation of momentum, list the momentum entering and leaving by
convection and diffusion, and momentum created through forces.

Divide by the shell volume and take the limit as the shell volume approaches
0.

Do this for both x-direction and y-direction momentum (or r- and z- direction
if working in cylindrical coordinates).

This will give the derivative of shear stress with respect to some direction.

4. Obtain shear stress and/or pressure profiles

Integrate the derivatives.
Apply boundary conditions if applicable.

5. Apply constitutive relationship
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e Use Newton’s law of viscosity to obtain the velocity profile from the shear
stress profile.

e Integrate.

e Apply boundary conditions.

6. Calculate flow rate if necessary

e The flow rate can be calculated as Q,, = (v, )A., where Q,, is the volumetric
flow rate, (v, ) is the average velocity, and A, is the cross-sectional area. The
average velocity can be obtained by integrating the velocity profile.

Mass Balance

Let’s consider a shell like the one below. Its lower left edge is located at length x and
height y along the conduit, and it has a length of Ax, a height of Ay, and a width of W.

y+Ay

[(pvy)(WAY)]ly [(PL)(WAY)]lxax

—> — >

X X+AX

Fig. 11. Diagram of mass inflow and outflow of a shell [1].
Starting with the general conservation of mass statement:

{Rate of accumulation of } _ {rate mass enterS} {rate mass exits}
mass in the system the system the system

We are only interested in steady-state problems, so there is no accumulation of
mass in the system. In addition, we are only interested in 1D problems, so we only need to
consider the mass flow rate entering through the left and exiting through the right, thus the
mass flow rate at position x and that at position x + Ax. The mass flow rate can be
calculated as the mass flux multiplied by the area, and since the shellis very small, we can
assume that density, velocity, and everything else is uniform in the shell, so there is no

need for a surface integral.

0 = [(pv )WAY]|, — [(ev ) WAY] |4 ax
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where p is density and v, is velocity in the x-direction. Mass flux is calculated as pv,. The
symbol |, denotes “at position x” (and |,; 4, “at position x + Ax”).

We know that both W and Ay don’t depend on x, so we can rearrange the equation
like so:

0= (pvxlx - pvx|x+Ax)WAy

We couldn’t do the same for p or v,, because they might vary with respect to x.
Dividing by the total shell area AxAyW':

_ (pvxlx - pvx|x+Ax)WAy — (pvxlx - pvx|x+Ax)
AxAyW Ax

0

Let’s take the limit as Ax and Ay approach 0:

(pvxlx - pvx|x+Ax) _ (pvx|x+Ax - pvxlx)

0 = lim lim —
Ax—0 Ax Ax—0 Ax
Ay—0

Notice that this is the exact same as the limit definition of a derivative:

df&)_r flx+h)— f(x)
dx  hoo h

So we can replace the limit with the derivative:

_8(pvy)
ox

If density is constant, then the result is simply:

0=

SV, _ 0
ox
So, at steady state, in 1D problems, if density is constant, velocity is constant in the
x-direction (but not necessarily in the y-direction), which is very convenient.

Momentum Balance

Momentum balance starts the same way as mass balance. Let’s once again
consider our shell of length Ax, height Ay, and width W, with its lower edge at position
(xy).
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[(Tyx) (WAX)]|y+Ay

y+Ay

[(Pv) (WAY) (1)l [P0 (WAY) (03] s ax

—> —>

y
X ﬁ X+AX

[(Tyx) (WAX)]| y

Fig. 12. Diagram of x-momentum inflow and outflow of a shell [1].

The conservation statement is:

{Rate of accumulation of } _ {rate momentum} {rate momentum} {rate of production}
momentum in the system) ~ | enters system leaves system of momentum

And we will, again, assume steady state:

0= {rate momentum} {rate momentum} rate of production
~ | enters system leaves system of momentum

Momentum can generally enter or leave the system in two ways: convection and
diffusion.

Fluid entering or leaving the system through the left and right faces of the shell
carries its momentum with it. We then obtain momentum flow rate by multiplying
momentum flux and area:

(pv) (v, ) (WAY)
where p is density and v, is the x-direction velocity.

On the other hand, we have already discussed the fact that shear stress at the top
and bottom of the shellis equivalent to moment flux due to diffusion. Another way of
thinking about this is the fact that, by multiplying the shear stress by the top or bottom
area, we obtain a force, and forces generate momentum. Thus, there is additional
momentum flow rate from the shear stress:

Ty (WAX)

where 7,,, is shear stress.
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Finally, there are generally two types of forces which generate momentum: pressure
and gravity.

The pressure force is the product of pressure and area. It applies on all 4 faces of the
shell:

P(WAy) or P(WAx)
where P is pressure.

On the other hand, gravitational force is the product of mass and gravitational
acceleration:

p(WAxAy)g
where g is gravitational acceleration.

Putting it all together, we can perform the momentum balance for x-direction and y-
direction momentum in the shell.

y-momentum

For y-direction momentum, since flow is only in the x-direction, there is no
convection or diffusion, only momentum generated through pressure and gravity.

0 = P(WAx)|, — P(WAX)|y4ay — p(WAXAy)g cosa

where « is the angle of the conduit relative to the horizontal (0° for a perfectly horizontal
conduit, 90° for a perfectly vertical conduit).

[P(WAX)]IwAy

y+Ay

p(WAXAy)(gcosa)

X [j X+AX
P(WAX)]

Fig. 13. Y-momentum generated through gravity and pressure [1].
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Dividing by shell volume:

0 P(WAx)|, — P(WAX)|y1ny — p(WAXAy) g cos a
B WAxAy

Ply_P|y+Ay
0 —T—pgcosa

Taking the limit:

. Ply - P|y+Ay
0= <A1311T0T — pgcosa

épP

0=—@—pgcosa

6P _
5y~ pg cosa
Integrating:

P = —(pgcosa)y + f(x)

We do not yet know what this f(x) is, but we will find it with x-momentum balance.

X-momentum

For x-momentum, convective and diffusive fluxes, as well as forces on the left and
right wall apply:

0 = (pv,) (v ) WAY) |, + 7y, (WAX) |, + P(WAY)|, + p(WAXAY) g sina
- (pvx)(vx)(WAY)lpﬁAx - Tyx(WAx)|y+Ay - P(WAy)|x+Ax
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y+Ay [{tyx)(WAx)]‘wAy

y+Ay

[P(WAY)]lx [P(WAY)]|xsax

::> :> <:| [(Pu(WaY) ()]l [(Pv)(WAY) ()]l ax
— >

p(WAXAy)(gsina)
y
X X+AX

X X+AX [(ryx) (WAX)],

y

Fig. 14. Diagrams showing x-momentum generation (left), and inflow and outflow (right) of
a shell. Adapted from [1].

Dividing by shell volume:

_ pv)?lx - pv)%lx+Ax + Tyxly - Tyx|y+Ay + Plx - P|x+Ax

0 Ax Ay Ax

+ pg sina

Taking the limit:

§(pv?) o1 8P
— ('D x)— yx——+pgsina

0= 6x éy  Ox

. o 5 .
Note that here, if density is constant, we found that % = (0 with the mass balance,
meaning that velocity does not change with x. Thus:

5(pv) 62

ox P ox 0

From here on, we need boundary conditions which depend on the problem.

Example: Flow between inclined parallel plates with pressure gradient

A fluid flows through two parallel plates at steady state. The height between the
parallel plates is much smaller than the width of the parallel plates, such that we can treat
it as a 1-dimensional flow problem. The plates have a length L, a height h, and are inclined
at an angle a. There is a pressure difference between the two ends of the plates. The
pressure at the top end is P, and the pressure at the bottom end is P;. The acceleration due
to gravity is g. The fluid is a Newtonian incompressible fluid with constant density p and
viscosity u. Find the velocity profile.
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Fig. 15. Diagram of inclined parallel plates with pressure difference [3].

Though you would be expected to do the entire shell balance procedure in exercises
and exams, we’ve already done most of the work above. We will adapt the results we’ve
obtained in the above sections to this situation to arrive at an answer.

From the mass balance, since the fluid is incompressible, we’ve obtained:
o _
ox
where v, is the x-direction velocity of the fluid.
From the y-momentum balance, we’ve obtained:
P =—(pgcosa)y + f(x)
for which we’ve yet to find f(x).

From the x-momentum balance, we’ve obtained:

But since the fluid is incompressible, we know that:

5(pvy) A Oy
ox P ox —p(va)E—O

So the x-momentum balance simplifies to:

OTyx 8P+ .
5y - ox pg sina
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Let’s focus on the pressure for a moment. If we start from P = —(pg cosa)y + f(x)
and take the derivative with respect to x:

5P df(x)
Sx  dx

. 5P . .
Notice that g is only a function of x.

Now, we know from Newton’s law of viscosity that:
vy
Tyx = _ﬂg
But we also know that v, does not depend on x, and only varies with y. This means
that 7,,,, and by extension %, are only functions of y.
8Tyx

8y
equation only depends on y, and the right side only depends on x. The equality can only

If we come back to = —i—z + pg sin a, we now realize that the left side of the

hold if both sides are equal to some constant.

ATy, df(x) _
dy ~ix +pgsina = (;

We can use this to solve for pressure:

df(x)
dx

= pgsina — C;

f(x) = (pgsina)x — C;x + C,
P =—(pgcosa)y + (pgsina)x — C;x + C,

Our boundary conditions for pressure are that at x = 0, the pressureis Py, and at
x = L, the pressure is P;. Solving for C; and C, yields:

CZZPO
P, —
C; = OL L+pgsina
Py—P
P(x,y) = —(pg cosa)y - ———x + P,

The pressure isn’t really necessary to find the velocity profile, but C; is very useful for
finding our shear stress:
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dTyx_ _PO_PL
dy ' L

+ pg sina

Py — P, :
Tyx = I +pgsina |y + Cs

We don’t have any boundary conditions for shear stress, since our boundary
conditions are no slip at both plates (v, = 0 atx = 0 and x = h). This means we’re forced
to carry the constant to our constitutive equation. Since the fluid is Newtonian:

vy
B =Ty
—_— == sina )y ——
5y I p\ L pg YT
1P0_PL 2 C3
vx——ﬁ( I +pgsma)———y+C4

Using our boundary conditions (v, (x = 0) = 0 and v, (x = h) = 0) we find that:

C,=0
C. = (PO_PL_I_ . )h
3 = I pg sina >
1/Py,—P 2 1/P,—P h
vx=—l7( OL L+pgsina>y7+;(0L L+pgsina)5y

v =h—2<PO_PL+ sina) X—y—z
*Zou\ 1 P h h?

. 8
Note that we could have used a symmetry boundary condition %; =0aty= gto

find C; before integrating ‘;—’;f

Cylindrical Shell

When conduits are circular, it makes more sense to use a cylindrical coordinate
system. The shell should look like a hollow cylinder:
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Portion of Tube

Az /

Fig. 16. Cylindrical shell [1].

Let’s first calculate the shell volume. We know that the shell volume will be the
difference between the volume of the outer cylinder and the inner cylinder:

V=n(r+Ar)?Az — nr?Az = n(2rAr + Ar?)Az

However, remember that we are assuming that our shellis very small, so Ar and Az
are very small. Squaring a small number makes it even smaller, so we can say that Ar? «
2rAr because Ar « 2r. This allows us to simplify the volume equation to:

V =2nrArAz
From the same argument, the area of the faces to the right and left of the shell are:
A = 2nrAr

Notice that the volume of the shell depends on r. This makes sense: a shell with a
larger radius would be bigger. This wasn’t the case in cartesian coordinates: the shell
volume didn’t depend on its position. You have to be careful when doing your momentum
balance, in particular for the shear stress (and radial pressure, if it applies). The shear
stress balance should look like:

(ZnTAZ)Trzlr - (27TT'AZ)T,«Z|7«+A7«

You might be tempted to factor out r, but you can’t, because r depends on r. So you
can only simplify it as:

((r‘frz) |r - (rrrz) |r+Ar)27TAZ

When dividing by volume, this becomes:
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((rrrz)lr - (rTrz)|r+Ar)27TAZ _ (rTrz)lr - (rTrz)|r+Ar
2mAzAY B rAr

And when taking the limit:

. (rTrz)lr - (TTrz)|r+Ar 1 . (rTrz)lr - (rTrz)|r+Ar 1 5(7'1'7-2)
lim = — lim - —_
Ar—0 rAr T Ar—0 Ar r or

General Method: Navier-Stokes Equations

For 3-dimensional problems and unsteady state problems in which internal
variation are important, you have no choice but to use the general method, the Navier-
Stokes equations. We’'ll first derive the Navier-Stokes equations and then look at how to
use them.

Derivation

Shell Balance

As before, we’ll take a small shell and apply conservation of mass and momentum,
then divide by volume and take the limit as the shell volume approaches 0. However, this
time, we aren’t assuming 1-dimensional flow or steady state. The shell will be a small
rectangular prism located at position (x, y, z) with sides of length Ax, Ay, Az.

(X,y,2) Ay

Az

AX

Fig. 17. Rectangular shell [1].

Conservation of mass

As before, we can write the conservation of mass statement as:

{Rate of accumulation of } _ {rate mass enterS} {rate mass exits}
mass in the system - the system the system
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For the rate of accumulation of mass:

om (5p
5t (p ) =

where m is mass, t is time, p is density, and V is the shell volume. Note that we can take the
volume out of the derivative because the volume is constant over time.

For the rate mass enters and leaves the system, we have to take the mass flow rate
at each of the 6 faces of the shell. Remember that the mass flow rate is the product of
mass flux and area, and that the mass flux is the product of density and velocity.

(pvy)|y+ay AXAZ (pv,)|, AxAy
"4
( (pt)x) X+AX AyAz
—, T—
/ﬂ
(PV,)],., AXAY (pv,)], AxAZ

Fig. 18. Mass balance of a rectangular shell [1].

{rate mass enterS} {rate mass exits}
the system the system

= (pvx)leyAZ - (pvx)|x+AxAyAZ + (pvy)lyAXAZ - (pvy)|y+AyAXAZ
+ (pvz)lexAy - (pvz)|z+AzAxAy

where v; is the fluid velocity in i-direction.

So, putting it all together:

op
VE = (pvx)leyAZ - (pvx)|x+AxAyAZ + (pvy)lyAxAZ - (pvy)|y+AyAxAZ + (pvz)lexAy
- (pvz)|z+AZAxAy
Dividing by the volume V = AxAyAz:
K5_P _ (pvx)leyAZ - (pvx)|x+AxAyAZ (pvy)lyAxAZ (pvy)|y+AyAxAZ

Vet AxAyAz AxAyAz

(pvz)l AxAy (pvz)|Z+AzAxAy
AxAyAz
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6p _ (pvx)lx - (pvx)|x+Ax (pvy)ly - (pvy)|y+Ay (pvz)lz - (pvz)|z+Az
— = + +
ot Ax Ay Az

Taking the limit as Ax, Ay, Az approach O:

St Ax—0 Ax Ay Az
Ay—0
Az—0

6_,0 — lim <(va)|x - (pvx)|x+Ax + (pvy)ly - (pvy)|y+Ay + (pvz)lz - (pvz)|z+Az>

S5p 5 5
E = _a(pvx) - @(pvy) - g(pvz)

This result is the continuity equation, which can also be expressed as:

5p
5t "

5
(pvx) +5 (pvy) +5, (pvz) 5—’; +V-(pV) =0

Conservation of momentum

As before, we start with the conservation statement:

{Rate of accumulation of

rate momentum rate momentum
momentum in the system} B { } {

= {enters the system} — {exits the system} + {

rate of production}
by convection by convection

of momentum

Since we aren’t assuming a 1-dimensional problem, we need to perform the
conservation of momentum for all three dimensions. Let’s focus on x-momentum for now.
Forthe accumulation of momentum in the system:

) ) )
g(mvx) = g(pvvx) = Va(pvx)

Again, we can take the volume out of the derivative since the shell volume does not
depend on time.

As before, momentum can enter or exit the shell both through bulk fluid motion and
through diffusion caused by shear stress acting on the faces. Starting with bulk fluid
motion, we must consider the momentum flow rate through each of the 6 faces.

{convective momentum}
transport
= (pUatxlx = PVl a)BYAZ + (pVy v Ly — pUy sl ay ) BxAZ
+ (pvzvxl, = PV Vx| zaz) DXDY
Because the fluid could have both y-, x-, and z-velocity components, it is possible
that fluid would be coming from the bottom face at an angle, like in the figure below. In this
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case, x-momentum would be added at a rate proportional to the y-velocity, which is why
terms like v, v, appear in the equation.

/

(x,y,2) Ay

/Az

Fig. 19. Diagram of fluid entering the bottom face of the shell at an angle. In this case, x-
momentum is added to the shell at a rate proportional to y-velocity and vice-versa [1].

# AX

Next, for shear stress, we need to consider the shear acting at each face.
Remember that the shear stress notation 7;; means that the stress is applied on the face
normal to the i axis and acts in the j-direction. Since we care about x-momentum, we only
care about x-direction shear stress for now, so all our shear stress will be of the form 7.

{di ffusive momentum}
transport

= (Txxlx - Txx|x+Ax)AyAZ + (Tyxly - Tyx|y+Ay)AXAZ
+ (szlz - sz|z+Az)AxAy

7, | AXAZz

(P38 ) lyay AXAZ () 4 )1 AxAY yx lyay z, |, AXAy
- Y
(pvxvx ) |x AyAz (pvx vx) |x+Ax AyAZ Tox IX AyAZ / fn Ix+ax AyAZ
- ,
(pvzvx ) |z+Az AXAy / T / I j_x
ﬂ_ ! T, |, 0r AXAY . ! ’
ZX 'Z+AZ
/ X (p’()yl)x ) Iy AXAz 7 Iy AXAZ

Fig. 20. X-momentum entering and leaving shell by convective and diffusive transport.
Adapted from [1].

Finally, we need to take into account forces generating momentum, namely
pressure and gravity. Since we care about x-momentum, we only care about the pressure
acting in the x-direction, so only pressure acting on the left and right faces. Though it is
counterintuitive, we also need to consider x-direction gravity, which might or might not exist
depending on how you defined the coordinate system.
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P(x)AyAz |PAXAyAzg, P(x+AX)AyAz

Fig. 21. X-momentum generated by forces of gravity and pressure [1].

{momentum

generated} = (Ply — Ply+ax)AyAz + pg, AxAyAz

Putting it all together:

)
V& (pvx) = (pvxvxlx - pvxvx|x+Ax)AyAZ + (pvyvxly - pvyvx|y+Ay)AxAZ

+ (pvzvxlz - pvzvx|z+Az)AxAy + (Txxlx - Txx|x+Ax)AyAZ
+ (Tyxly - Tyx|y+Ay)AxAZ + (szlz - sz|z+Az)AXAy + (Plx - P|x+Ax)AyAZ
+ pgAxAyAz

Dividing by the shellvolume V = AxAyAz:

ﬁ( ) = (PVxVx|x — PV Vslirax) N (pvyvely — PVyVLlysay) N (v, vel, — PUyVx | seaz)
5t P Ax Ay Az
(Txxlx - Txx|x+Ax) (Tyxly - Tyx|y+Ay) (szlz - sz|z+Az)
+ + +
Ax Ay Az
(Plx - P|x+Ax)
+ Ax + Pz

Taking the limit as Ax, Ay, Az approach 0:

é O0Tyy OTyy 067, OP

o) o) o)
a (pvx) = - a (pUxe) - 5_)7 (pvyvx) - a (pUzUx) - Sx Sy 57 g + pg,

Now, we can simplify this equation using the product rule (% (uv) = uZ—Z + vZ—Z):

OV, N 6p OV, ) (ov.) OV, [0) ( ) OV, 1) (ov)
0Tyy OTyy 0Ty OP

~5x by bz ~ox T PIx

62



8p ) 8 4
pﬁ + (UXE + Uxa(pvx) + vx@(va) + vxg(pvz)>

B vy OV, O0vy 0Ty O0Tyx OTyy 6P+
TP sy TP sy TPV s, T e T sy 6z ox ! Px
OV, ép O é é
'DE + Uy (E + a(pvx) + 6_y(pvy) + g(pvz))
B vy OV, O0vy 0Ty O0Tyx OTyy 6P+
TP sy TP sy TPV s, T e T sy 6z ox | PIx
Recall from the continuity equation from conservation of mass that:
ép O é é
E + a(pvx) +@(pvy) + g(pvz) =0
The equation simplifies to:
6v, v, v, O0vy 0Ty O0Tyx OTyy 6P+
Pist = P Tsx TP sy TPV s, T Tsx T sy 6z ox . PIx

As stated before, this is for x-momentum only. We would have to repeat this for y-
and z-momentum to obtain the result:

Sv, v, v, 0vy OTyx OTyx 0Ty, OP N
Pist = PV Tsx TP sy TPV s, T Tsx T sy 6z ox . PIx
Sv, Svy, Sv, v, 061y, 061y, b1, OP

Pst = TPV sy TPy 6y_’m]z 5z  ox Sy 8z —E+pgy

ov, v, ov, v, Oty, 61y, 061, OP

PE=—Png—PUyW—PUz 5z o g"'ﬂgz

X Sy 6z

These are a form of the Cauchy momentum equation and, along with the continuity
equation, form the equations of motion. Notice that, so far, we have made no
assumptions, so this equation can be used in general. However, the continuity equation
and these three equations have a total of 13 unknowns (x-, y-, z-velocity, the 9 stresses, and
pressure) for 4 equations. We need to simplify them a little to arrive to Navier-Stokes.

Torque Balance

The shear stresses acting on the shell will introduce torque. For now, let’s work in
2D. Let’s consider a shell at position (x, y) with sides of length dx and dy, and let’s take the
depth to be 1.
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1 OTya

dy

2 dy
dx
1 dTJ'U - _ 1 ()T”,, )
T o dvf Tty
X
197y ,
Tyr — 5 ()y dl

Fig. 22. Moments acting on the sides of the shell [1].

We know the value of the shear stresses t,,, T, at position (x, y), thatis at the

. . - d
center, but we do not know their values at the sides of the shell, so at positions x + %and

d . . .
y+t 73’ To obtain those, we can use the tailor expansion:

d _ 2 d2
fx) =f(a) + (x—a)—f(a) +Mﬁ(a) + ..

dx 2!

In this case, we ignore the derivatives of order higher than 1, as they should be very
small. So for shear stress at the walls:

dx\ 87y,
T"ylxi%x =Tl (i 7) Sx lx

dy\ 6t
st = ol + (£57) 57

To obtain the torque, we multiply force and distance from the center. To obtain force,
we multiply shear stress by area (which is either dx or dy, since the depth is 1). So, for
example, the torque created by the shear stress at the top face would be:

dy 6t dy
((‘L’yx + 7 5;)6) dx) 7
ATy

. .. d .
» is the shear stress at position y + 73’, dx is the area of the face,

dy
where 7, + >y

ATy
dy

dy
(Tyx T3

center.

. dy . .
) dx is the force created by the shear stress, and Ty is the distance from the

We have to add the other 3 shear stresses to obtain the total torque. Keep in mind
that torque is positive when acting counterclockwise:
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dy 8Ty, dy dy 8Ty, dy dx 87y, dx
yx+7w>dx7+ ’l'yx—?W dx— Txy 7 5x dy —

2 Y72
dx 8ty P dx
By T sk )2

We can rearrange and simplify this:

total torque = (T

Tydxdy N dxdy? 6Ty, N Tyxdxdy dxdy? 6Ty,  Tyydxdy dydx? 81y,

total torque =

2 4 by 2 4 by 2 4 Ox
Tyydxdy N dydx? 6Ty,
2 4  Ox

total torque = 1y, dxdy — Ty, dxdy = (Tyx - Txy)dxdy

The total torque is equal to the product of angular acceleration and moment of
inertia.

total torque = la
where I is the moment of inertia and «a is angular acceleration.

For our rectangular prism, the moment of inertia is:
I = lm(dx2 + dy?)
12

where m is the mass of the shell.

This means that:

1
total torque = Em(dx2 +dy?)a

We can set both total torque equations equal to each other:
1
total torque = (Tyx — Tyy)dxdy = Em(dx2 +dyHa

As always, we divide by the shellvolume V = 1 X dxdy:

(‘L'yx — rxy)dxdy _ im 5 5
Dxdy 12y @t Hdyda

1
(ryx —Tyy) = Ep(dx2 +dyHa

When taking the limit as dx and dy approach 0, the entire right side becomes 0:
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1
(Tyx - Txy) = (})icrlloﬁp(dxz +dy*)a=0
dy—0

Meaning that:
Tyx = Txy
We can repeat this in the other planes to find that:
Txy = Tyx
TXZ = TZX
Tyz = Tzy

We got rid of 3 of the 9 stress variables, leaving 6. Unfortunately, in the general case,
thatis as far as we can simplify the equation. From here on out, we need to make
assumptions. We can start by applying a constitutive relationship to our fluid to simplify it
further.

Navier-Stokes

Let’s start by looking at deformation in the xy plane.

0, (XY + AYAt ———

(At ———

Shape at t+At

Ay Shape at t

v, (X + Ax,y)At

Fig. 23. 2-dimentional deformation of fluid when subjected to shear stress [1].

We’ve already seen in the rheology portion that, when there is deformation in 1-
dimension, the rate of change of the angle y was related to the velocity gradient.
dy dvy
dt  dy

In this case, we are working with 2 deformations, and thus 2 shear strain rates at
once, but the equation still holds:
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d)/Z _ va

dt 8y
dy: dv,
dt  8x

This allows us to calculate the average rate of deformation, which is simply the
average of the shear strain rates:

yx 2 2
If we do the same in the other planes, it gives us similar results:

1<6vy 6vz>
D,,=D,, ==(=2+

v =2\ 6z ' &y

b =D _1(6vx+8vz)
Xz 7z T2\ 8z 8x

However, recall that we also had shear stresses of the form 7, in the equation.
These are shear stresses acting in the x-direction on the plane normal to the x-direction
which ... isn’t really a shear stress, but a normal stress. Then let’s look at how the normal
strain is related to the velocity gradient.

«— AX ———

A
Shape at t
Ay Shape at tiAt
v I
Uy (X, y)AL Uy (X + AX, )AL

Fig. 24. 2-dimentional deformation of fluid when subjected to normal stress [1].

In this case, the normal strain is equal to the change in length of the object over the
original length of the object:

AL

Ex 7

where ¢, is the normal strain in the x-direction, AL is the change in length, and L is the
original length.
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The change in length can be obtained by subtracting the original length at t by the
length att + At. The original length is simply Ax. The length at t + At is the difference
between the position of the right edge and the left:

length at t + At = (v, (x + Ax, y)At + Ax) — v, (x,y)At
So for the normal strain:

AL (v, (x + Ax, y)At + Ax — v, (x, y)At) — Ax 3 (v (x + Ax, y)At — v, (x, y)At)
BT Ax - Ax

Dividing by At and taking the limit:

& ) (vx(x + Ax,y) — v, (x, y))
lim — = lim
Ax—>0 At Ax—0 Ax
At—0 At—0
dey vy
5t 8x

For the average rate of deformation, there is nothing to average over, so it is simply
equal to the normal stress:

ov.
Dyx = 6_XX

If we repeat this in the other directions, it gives similar results:

Sv
y
P =%y
ov,
=5

Notice that, in general, the average rate of deformation is:

1 SUL' 617]
Pu=bi=a\5 e

Now, we need to relate the average rates of deformation to the shear stresses. In
general:

7 = f(Dyj)

That function depends on the fluid we are studying. However, if we assume an
isotropic, incompressible fluid, the equation is:
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. onD.. = 8vi+8vj
et A WYY

where 7 is the apparent viscosity, which is a function of 7;; itself.

If we assume the fluid is Newtonian:

_ Svl N 8v;
ty = 6] Ol

where u is the viscosity, which is constant.

We can replace this into our original equations of motion. Here, we’ll do it to the
relevant part (the part containing shear stresses) of the x-momentum equation as an
example.

Ot Ol Ot D () (O O)) O (O O0)) O (0 O
6x &y 6z  Ox ox = &x 6y oy  Ox 6z ox &z
0Ty 0Ty 0Ty _ 8%v, N 8%v, N 8%, N 82, N 8%, N 8%,
Sx Sy 6z 6x2 ~ 6x%2 = 8y?  Ox8y Oxb6z = &z2

N————

_5Txx_5fyx_5fzxzu 62vx+62vx+62vx ny K 6&_‘_6&_*_%
Sx Sy 6z ox? ~ by? = 6z2 éx\6x Oy 6z
This can be further simplified using the continuity equation:
5/)
(5t (p x) + (pvy) + (,DVZ) =0

Since we are assuming the fluid is incompressible, density does not vary with time
or position, so it can be taken out of the derivatives:

8& + 8&4_ SUZ —
ox o6y oz

So if we come back to our simplification:
0Txx  OTyx 0T, (870 N 8%v, N 8%v, N 1) o)
dx Sy 5z H\sx2 dy? = &z? K\ ox

8Tux OTyx 6Ty (82vx 8%v, 62vx>
— — — :‘u_

dx oy 6z ox2 + dy? + 6z2
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This can be repeated for the y- and z-direction momentum. Allin all, the continuity

equation and Navier Stokes equations for an incompressible, isotropic, Newtonian fluid
are:

%4_6&4_6172:
ox &y &z

SV ( SV, N 85V, N 6vx) _ (8v  8v  8%v,\ 6P N
Pst TP\Bsx T sy TV, ) TH k2 T eyz T ez | T 6x ' PYx

Sv,, Svy Svy, sv,, 8%v, &%v, &%v,\ 6P
p?“’(”"s TS TV ) T s ey Tz ) "5y TP

5v, N ( v, N 5v, N 6172) (8,  &%v, &%v,\ 6P N
Pst TP\ sy T sy TS ) TH sk Teyz T eaz ) T 52 T PY2

These can also be written as:

—

ov

V-v=0, p§+p(ﬁ-V§)=uVZﬁ—VP+p§

Sv v v .
Note that the p (vx 5—; + v, 6—; + v, SZX) terms represent convective momentum

L 52 52 52 e
transport or inertial effects and the u ( 8:2" + 8;2" + SZVZx) terms represent diffusive

momentum transfer or viscous effects.
We can also write Navier-Stokes as:

Dv R
pﬁzuv v—VP + pg

See the section on the substantial derivative for more details.

Other Coordinate Systems
Cylindrical Coordinates

Continuity equation (general):

5p 16 16 5
5t + oy (rpv,) + ;@(Pve) + g(PVz) =0

Continuity equation (for an incompressible fluid):

16 16 o)
;§(rvr) + ;@(Ue) + g(vz) =0
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Navier-Stokes equations:

Sv, < S5v, vebv. TV} 5vr>
+pol|\v,—

P 5t sr Y750 7 Tz
(318 ) L8 26 8w\ 6P
“H\sr\rer Y r2 802 12 80 @ &z2 5r " PIr
dvg Vglvg Vv vy

Pst +p(vr 6r+r 50  r M 62)

3 5 16( ) +162v0+28vr+62v9 16P+
—H Sr\rér "o r2 §0%2 12 80 6z2 r 860 Pge

5v, N ( 5v, N vy OV, N 6172) (18 ( sz) N 1 6%y, N 8%v,\ 6P N
Pst TP\ sr T 0 T V282 ) T H\rar\ oy r2 8§02 = §z2 5z P9z
Spherical coordinates
Continuity equation (general):

sp 168 1 6 _ 1 6§
§+r—2§(r pvr)+rsin96—9(pve Sln9)+rsin9%(m’¢) =0

Continuity equation (for an incompressible fluid):

19 + ! 8( in @) + )=0
rsingsg 2" rsin 8 6¢ Vo) =

Navier-Stokes equations:

%_I_ vSvr vy 60y v§,+v§+ vy OV,
P\"sr * 7 56 T rsin@ 8¢

=u( Vv _2 v+8ﬂ+v cotf + L %V —6—P+
KAV 2 \r Mg T e sin6 dg or P9

6179 6179 Vg 61]9 U¢ (51]9
PW“’(W?T("” ) g (5~ 70050
2 v, 1 v > 16P

¢
r2 80 r?sin?6 (Vg + 2 cos o r 66 L

=u <V2U9 +

ov ov vy OV v ov
e 7o 7677 ¢ ¢
+p(vr 5r T 50 rsin9<8¢

+ v, sin 8 + vy cos 9))

I 1 ( 2 si 96vr ) 06179) 1 6P+
—# Ve Ttz sinz g \"® st o cos o rsing oz PI¢
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Using Navier-Stokes

The Navier-Stokes equation does look scary at first, and it should. However, in this
class, the challenge isn’t to solve the equation, but to simplify it until it can be solved
easily. Here is the general method to solving a general problem with Navier-Stokes:

Write down assumptions

Choose coordinate system if one isn’t given

Use the assumptions to remove terms and simplify equations.

If necessary, scale the problem to simplify it further

Identify boundary conditions (need 1 for each variable and each derivative of a
variable)

A

6. Solve equations

Examples of assumptions
e Fluid properties:
o Incompressible fluid: can remove density term from continuity equation
o Newtonian fluid: can use Navier-Stokes
e Time-dependence:
o Steady state: can remove any term with %.
e Velocity:
o Onlyvelocity ini-direction: can remove any term containing velocity in any
other direction
o fully developed flow: can sometimes remove velocities in other directions
o Noi-direction velocity: can remove any term containing v;
e Directional dependence:
o Property Xdoesn’tvary in i-direction (for example, pressure doesn’t change
with z): remove any term with i—}f
e Gravity:
o Ignore gravity: remove gravity terms
o You will have to change the gravity terms to fit your coordinate system
regardless. For example, if your coordinate system is the “normal” cartesian
coordinates, where the y-axis is vertical, then only 9y would be relevant, and
you could remove g, and g,.
e Scaling:
o Some side Ais much longer than the other side B: §~0. Usually, derivatives

in the directions of the much longer side are negligible.
o The Reynolds humberis smallor large.
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Scaling

We’ve already looked at scaling previously. However, we only did it for 1D flow. If you
are considering other dimensions, the process is very much the same, but you will have to
find characteristic lengths fory and z, and characteristic velocities for v), and v,. Typically,
you can simply use the height and width of the problem for y and z, and y- and z-direction

average velocities for v, and v,. Typically, after substituting your nondimensional numbers
height
width’

in, you should look for the Reynolds number and ratios of characteristic lengths (like

for example).

Stream Function

In 2D, for an incompressible fluid, we can define a stream function W(x, y) that
satisfies the continuity equation:

Y 5

We can verify that this satisfies the continuity equation for incompressible fluids:

ove  Ovy _
éx Oy
é (6‘P>+ é ( 6‘{’)_0
6x \ 8y sy\ 6ox/
52¥  5%Y

6xby B 8ydx =0

Streamlines

Let’s start by taking a look at the differential of the stream function:

le—6lpd +6lpd = dx + v,d
=57 5y y = —vydx + v, dy

If we take a line where the stream function is constant, such that W(x, y) = C, then
along this line the differential would be 0, since the value of ¥ would not change:

d¥ =0 = —vydx + v, dy

If we rearrange:
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dy vy

vy

This means that, at all points along this streamline, the streamline is always
tangent to the velocity field. Fluid moves along the streamlines, and never crosses
through it. This can be useful to visualize the path the fluid takes.

Reynolds Transport Theorem

We derived the equations of motion using a general shell balance approach, but
there are other ways to derive the equation. Here we will explain the Reynolds transport
theorem and apply it to derive the equations of motion again.

First, let’s set up the scene. Let ® be some extensive property, such as mass or
energy, and ¢ be the corresponding intensive property, which is just @ per unit volume,
such as density or specific energy. Now let’s take an arbitrary control volume, which is just
an open system denoted CV, which has a bounding surface CS. Initially, within this control
volume, there is a material volume, which is just a closed system denoted MV. The material
volume contains a certain amount of ® which, because itis a closed system, cannot flow
in or out of the material volume. Initially, these two systems overlap, such that all of the
property @ in the material volume is also contained in the control volume. After a short
time dt, however, the material volume moves compared to the control volume.

\ 1

| | |

1 ! '

i : i

i Material volume ! h Material volume
: | |

1 ! i

i ' i

1 ! 1

Time t=0 Time t=dt

Fig. 25. Diagram of the movement of the material volume relative to the control volume at
times 0 and dt.

We want to relate the rate of change of @ in the material volume to that of the
control volume. For now, let’s start with a simple example with marbles. We initially have 4
marbles inside a closed bag within a bowl. Here, the marbles are the extensive property @,
the bag is the material volume MV, and the bowl is the control volume CV. Since the
material volume is a closed system, no marbles can enter or leave the bag. Let’s say after
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some time dt, we have moved the bag a little such that one of the marbles within the bag

has left the bowl, and have added two marbles to the bowl.

bowl | _------el - bowl{ __--=---=---_ R
I’/ \\\ --------- /- "‘
7 N L7
R4 AN i bag
// N ,/
/ AY s
1 AY ’
1 \ 1
1 1 1
1 1 ]
I I 1
1 1 1
1 1 1
\ 1 1
\ I \ 1
A 1 \ 1
\ 1 \ ’
Ay 4 Ay ’
N\ / AN . v’
A 4 AN e
e g S y
. \\ PR \\ L’
\\ /, \\ /,
=0 t=dt
Marbles in bag: 4 Marblesin bag: 4
Marbles in bowl: 5

Marbles in bowl: 4

Fig. 26. Illustration of the change in marbles inside the control volume (bowl) and material
volume (bag).

We want to relate the change of marbles in the bag, which is 0, to the change of
marbles in bowl, which is 1. We can do that using the net outflow of marbles out of the
bowl, or the net amount of marbles which leave the bowl, which in this case is —1. In this

case, then, we can say that:
} {net amount of marbles}

{change of marbles} _ {change of marbles
B which left the bowl

in the bag in the bowl
0=1+(-1)
Now, if we generalize this, we can obtain the Reynolds transport theorem:

{rate of change of dD} _ {rate of change of d)} + {net rate of outflow of d)}
in material volume in control volume across boundary surface

which we can express as:

d d
— | ¢av=—| ¢pdV+ | ¢ RdA
dt MV dt cv CS

75



where 7 is the velocity of the fluid relative to the boundary surface, and 7 is the unit normal
vector pointing outwards.

Applying the Reynolds Transport Theorem

We can now use the Reynolds transport theorem to prove our equations of motion
again. To do this, we apply the theorem to mass and momentum.

First, let’s take ® to be mass m and ¢ to be density p. Since mass is neither created
nor destroyed, there is no way for the mass in the closed material volume to ever change,
so we already know that:

{rate of change of dD} —0
in material volume

which leaves us with:

d
0= jpdV+jp13-r_idA
dt Jey cs

Now, we can simplify this. First, we can use Leibniz rule to take the derivative inside
the integral:

il
pdV = f —dV
dt Jey cvd

Second, we can use the divergence theorem (think back to MATH 264) to change the
surface integral into a volume integral. As a reminder, the divergence or Gauss’s theorem is:

fv-ﬁdvzfﬁ-ﬁds

%4 S

In our case:
fpﬁ-ﬁ’dAzf V- (pB)dv
CcS cv

which leaves us with:

O—fCV—dV+f V-(pﬁ)def <‘;’t’+v (pv))

Now we can just get rid of the integral to come to:

op
5t +V-(pv) =0

This is our continuity equation.
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Now, let’s do the same thing for momentum, so ¢ is momentum density pv.
Momentum can be created by shear and gravitational forces, so in our case:

{rate of change of CD} = f pgdv +f o - RdA
in material volume cv cs

where g is the acceleration due to gravity and g is the stress tensor.

Putting this into the Reynolds transport theorem:
- — d g S
f pgdV + f o-ndA = pvdV + j pv(v - n)dA
- dt cs
We once again use Leibniz rule (and the product rule):

df de 2 (p)av = j 8054 59 ay
dt )0V ot Y 5t° TP 5t

Using the divergence theorem:

jg-ﬁdA=j V-odV
cs cv

f (5 - 7)dA = f V- (oi)dv = [ @Y (ob) + (oB) - Vi)dV
CcS cv cv

Together, it gives:
- 6p - 6 U -, - - -
f pgdv +f V-agdV = f —vV+p—|dV+ | @V (pv)+ (pv) - Vv)dV
cv cv ot ot cv
We can get rid of the integrals:

ép 5V
6tv+p6t+vv (pV) + (pv) Vv =pg+V-o

6p+V( V) 6ﬁ+*v*— g +V
St pv st TV VYT PY g

We’ve already proven that(;—’; +V-(pv) =0:

&V |, o S5 . . .. DV . .
We can express 5 + v - Vv using the material derivative e In addition, for a viscous

fluid, the stress tensor o can be expressed as:
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g=-Pl+z

where P is pressure, [ is the identity matrix, and 7 is the shear stress from viscosity. Thus,
the stress tensor term becomes:

V.co=V--PI+V.-1=-VP+V:-1
This leaves us with:

DY pG—vP+vV
Dt = P9 T

which is a way to write the Cauchy momentum equation. If we use the incompressible
Newtonian fluid assumption as we have done above, we will come to the Navier-Stokes
equation.

78



Heat Transfer

Introduction

Heat transfer occurs in three mechanisms. Two of these are familiar: “diffusion” in
the form of heat conduction, and convective heat transfer from the bulk movement of a
fluid carrying some heat. In addition, heat can be transferred through radiation, or
electromagnetic waves. To start, we’ll go through these one by one.

Heat conduction

Heat conduction is caused by rapidly vibrating molecules which can interact with
neighboring molecules, causing them to vibrate. In the case of fluids, there is also the
random movement of molecules which creates diffusion of rapidly and slowly vibrating
molecules. As we’ve seen previously, for diffusive transport, the flux is proportional to the
gradient of some potential. Here, the heat flux is proportional to the temperature gradient,
with the thermal conductivity as the proportionality constant, giving us Fourier’s law of
conduction.

Qx dT
Qx = — = —k—
A dx
where g, is the heat flux in the x-direction, Q, is the heat flow rate in the x-direction, 4 is the
area (heat flow is normal to this area), k is thermal conductivity, and T is temperature.

Example: temperature gradient in a hollow cylinder

The temperature gradient is easy enough to obtain in rectangular coordinates by
applying Fourier’s law of conduction, but might be a little trickier in cylindrical coordinates
because the area changes as a function of the radius. Because of this, it’s better to work
with the heat flow rate than the heat flux. Let’s use a simple example with some hollow
cylinder of length L, inner radius r; with inner temperature T;, and outer radius 7, with outer
temperature T,. We wish to know the temperature gradient in the r-direction if we are at
steady state.
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Fig. 27. Diagram of the hollow cylinder [1].

Let’s start by using Fourier’s law of conduction, but using heat flow rate rather than
heat flux:
. dT

Qr = _kAE

where the lateral area of the cylinder A is a function of r:
A=2nrL

Now, because we are at steady state, the heat flow rate should be constant. Let’s
take a thin cylindrical “slice” and think about the heat that goes in and out of this “slice”.
We should find that, if the heat going into the slice does not equal the heat coming out of it,
heat would accumulate and temperature would change. This wouldn’t work in our steady
state case. Then the heat going into and out of any arbitrary “slice” have to be equal, so
heat flow rate must be constant over the radius of the cylinder.

Qou[

Fig. 28. Heat flow rate into and out of thin slice of the hollow cylinder. At steady state, these
must be equal.
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From there, it’s simply a matter of integrating and using our boundary conditions.

First, integrating over r:

ar ¢ Qr 1

dr - kA kQul)r

~ Q 1. Q
e R s i wowrs L QR

We don’t know what the value of Q',, is, but we can obtain it using our boundary

conditions:
Tr=7r)=T
T(r=r1,)=T,
0 Qr
T,—T; = K2nD) In(r,) + r2nD) In(r;)
Q. _ 2nkL(T, — T;)
r ‘r'l
In ()
which leaves us with:
T=—( l)ln(r)+C1

in ()

We can find C; using either of our boundary conditions and come to:

TG) -1, 0 (5)

L-T ()

Temperature gradient in a slab

The process to find the temperature gradient of a slab (in cartesian coordinates) is
similar, but area is independent of x, so we can work using the heat flux rather than heat
flow rate. We wish to know the steady state temperature gradient of a slab of length L if the
left side is maintained at T, and the right side is maintained at T} .
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Fig. 29. Diagram of a slab and temperature distribution within a slab at steady state [1].

In this case, the temperature gradient will be:

TL _To

T(x) = T

x+T,

Electrical circuits analogy

Just as in the fluid mechanics case, we can use an electrical circuit analogy. In this
case, electrical current will be analogous to heat flow rate, electrical potential difference
will be analogous to temperature difference, and electrical resistance will be analogous to

thermal resistance to conduction Ry. Then, Ohm’s law (I = g) becomes:

AT

RT,cond

Q

The expression for thermal resistance depends on the geometry of the object. In a

slab:
._(Ak)AT_ AT R _ L
Q - L - RT,cond, T,cond — Ak
where A is area.
In a hollow cylinder:
T,
2wk \ AT o (%)
B In (T'_o) B RT,cond ’ T.eond = 2kl
T



We can combine these resistors into circuits. Let’s take the example of a wall made
of three different materials as pictured below, with three different thermal conductivities.
One side is maintained at a high temperature Ty and the other at a low temperature T;. If
we wish to know the heat flow rate Q, we can make an equivalent circuit as pictured below
in Fig. 30.

RT,condl

R T,cond3
TH TL

RT,condz

Fig. 30. Diagram of equivalent electrical circuit to a slab composed of three different
materials with different electrical conductivities ki, ko, ka.

Then, we can simply calculate the heat flow rate as:

o= AT _ AT
RT,total 1 + RT.cond3
1 N 1
RT,condl RT,condZ

Heat convection

When a fluid moves across a surface, the rate of heat transfer can be greatly
enhanced. Think about wind chill: even if the outside air is at the same temperature, it feels
much cooler when it’s windy. This effect is due to heat convection.

We can quantify heat transfer at the surface due to heat convection using Newton’s
law of cooling:

q=—=h(T, —T)

Nl
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where q is heat flux at the surface, Q is heat flow rate at the surface, S is the surface area, T,
is the temperature at the surface, T, is the temperature of the fluid far away from the
surface, and h is the convective heat transfer coefficient.

Then, to deal with heat convection problems, the key is finding this heat transfer
coefficient, which is usually obtained empirically. Before doing that, however, let’s go over
boundary layers.

Boundary layers

U, free
stream

yY yF v

boundary
layer

v(y)

|

T, T free

— * stream

AR\ B

boundary

—_ layer

Fig. 31. Progression of the velocity and temperature boundary layer across a thin horizontal
plate [1].

Let’s imagine that some fluid is moving at velocity v,, with temperature T,, before
encountering a flat plate which is unmoving at temperature T;. Right at the edge, when the
fluid first encounters the plate, the layer of fluid directly in contact with the plate is stopped
due to the no slip condition. However, the layer of fluid directly above it isn’t affected yet; it
still moves at v,,. As we move along the plate, momentum will have had the opportunity to
diffuse, so the fluid layers close the surface will move slower than those high above it.
Thus, we have a free stream high above the plate where fluid moves at v,,, and a boundary
layer close to the plate where fluid gradually slows down until being immobile at the plate
surface. As we move further along the plate, momentum will diffuse higher and higher, and
the boundary layer will expand. We define the edge of this boundary layer as the height
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where fluid velocity is at 99% of the free stream velocity v,,. The height of the boundary
layer is related to the Reynolds number:

6 1

—_—~

L /Re,

where § is the height of the boundary layer, L is the length along the plate, and Re; is the

Reynolds number.

So far, we have been talking about the velocity (or momentum) boundary layer, but a
similar thing happens for temperature: at the edge, the fluid layer in contact with the
surface will be at T, and as we move along the plate, heat will have had time to diffuse
upwards, creating a thermal boundary layer. We define the edge of this boundary layer as
the height where the difference between fluid temperature and surface temperature Ty is at
99% of difference between free stream fluid temperature T,, and surface temperature T;

( LT 0.99). The height of the thermal and velocity boundary layers don’t have to be the

Ts—Teo
same. We can compare them using the Prandtl number (Pr), which compares momentum
diffusivity to thermal diffusivity.

Chb Vv
pr=-2"_—-_
k a

where Pr is the Prandtl number, ¢, is the specific heat capacity, p is viscosity, k is thermal

conductivity, v is the dynamic viscosity or momentum diffusivity (defined asv = %, where p

is density), and a is thermal diffusivity (defined as a = p%).
4]

Thus, when the Prandtl number is small, momentum diffuses slower than heat, so
the momentum boundary layer will be smaller than the thermal boundary layer, and vice
versa. The height of the thermal boundary layer, then, can be obtained as:

5n 1
L . /Re,\Pr

where § is the height of the boundary layer.
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Finding the heat transfer coefficient

The heat transfer coefficient depends on multiple factors:

1. Free orforced convection

e Inforced convection, fluid flow is driven by an external source, like a fan,
pump, or wind.

e Infree convection, the heat itself creates fluid flow due to thermal expansion
of the fluid. Consider air above a hot plate: as the hot plate heats air above it,
the hot air will expand and rise, and cool air will come in from the side of the
plate. This happens anywhere there is gravity.

2. Geometry of the boundary layer region, and whether flow is external or internal

e In external flow, the boundary layer will keep expanding.

e Ininternal flow, the boundary layer is constrained; eventually the boundary
layers on each side will meet, and flow will be fully developed.

e Infree convection, the orientation of the surface relative to gravity is
important.

3. Laminar or turbulent flow in the boundary layer domain
4. Properties of the fluid and surface

When talking about the heat transfer coefficient, we can either refer to the local or
average heat transfer coefficient. The local heat transfer coefficient h, depends on the
position along the surface, whereas the average heat transfer coefficient h is averaged over
the surface:

E—lfhds
=5 )t

where h, is the local heat transfer coefficient, histhe average heat transfer coefficient, and
S refers to the surface area.

As stated previously, the heat transfer coefficient has to be obtained empirically.
Because heat convection problems include many variables, we use the Buckingham Pi
theorem to make experiments easier. After applying Buckingham Pi, the relation used to
find the heat transfer coefficient is:

hL _ (Cpfu prw)L pFLPBg(Ty —Ter) d k_>
ke ke ' ow u? "L ks

d kg
Nu; = f | Pr,Re,, GrL'Z'E
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where h is the heat transfer coefficient, L and d are characteristic lengths, kr and k; are
heat transfer coefficients of the fluid and surface respectively, p; is the density of the fluid,
Cpr is the specific heat capacity of the fluid, u is viscosity, (v) is the fluid velocity in forced
convection, S is the coefficient of volume expansion, g is gravitational acceleration, and T
and T, are the temperature of the surface and fluid respectively.

There are a lot of dimensionless numbers present. We have already seen the
Reynolds number Re; and Prandtl number Pr. The new numbers are the Nusselt number
Nu; and the Grashof number G7;. The Nusselt number is the ratio of heat convection to
heat conduction inside the fluid, while the Grashof number is the ratio of buoyant to
viscous forces, which is useful when dealing with free convection.

However, in general, not all of these terms are important. For forced convection, the
equation simplifies to:

Nu; = f(Rey, Pr)
For free convection, it simplifies to:

Nu, = f(Gr, Pr)

Heat transfer coefficient equations

In general, the method to obtain the heat transfer coefficient is:

1. Determine the characteristics of the system:
e Forced or free convection
e Internal or external flow
e Laminar or turbulent flow
e (Geometry and orientation
2. Usethe empirically derived equation for this situation to find the Nusselt number
e Can be given in the problem, found in this coursepack, in lecture notes, or in
the literature.
3. Usethe Nusselt number to find the heat transfer coefficient
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Situation: steady state, forced convection, internal flow, circular cross-section

In this situation, we need to consider both thermal and hydrodynamic entrance
lengths.

Table 4: Thermal and hydrodynamic entrance lengths.

Entrance length Laminar flow Turbulent flow
Hydrodynamic Lentn Lentn
entrance length d 0.0567Re, d 10
Thermal entrance Lentt Lentt
length 4 = 0.0567Re,Pr — = 10

where L, , is the hydrodynamic entrance length, L., . is the thermal entrance length, and
d is the conduit diameter.

In addition, since there is no “free stream temperature” T, in internal flow, we use
the mixing cup temperature, which is the temperature we would obtain if we took a thin
slice of the fluid at the cross-section and mixed it together:

~ fAC(pcpT)vdAc
" fAC(pcp)vdAc

where Tp, is mixing cup temperature, p is density, ¢, is specific heat capacity, T is
temperature, v is velocity, and A, is the cross-sectional area.

In the case of an incompressible fluid with constant Cps in a circular cross-section of
radius 1, the mixing cup temperature simplifies to:

. 2 foro vTrdr
T (o

where (v) is the average velocity.
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Table 5: Nusselt number at steady state in forced convection internal flow with circular

cross-section for multiple cases

Case Equation Notes
Fully developed Thermal conductivity
laminar flow, Nu,; = 4.36 evaluated at mixing
constant heat flux cup temperature
Full L
LY f:leve oped Thermal conductivity
laminar flow, .
Nu,; = 3.66 evaluated at mixing
constant temperature
temperature cup P
Velocity and

temperature profiles
developing, laminar
flow

0.0668 (%) ReyPr
Nu, = 3.66 +

1+ 0.04 [(%) RedPr]2/3

Turbulent flow

Nuy = 0.023Re)/*Pri/3

Usually, entry length is
very short and can be
ignored
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Situation: Forced external flow

Fluid properties are evaluated at the film temperature T¢, which is the average of the

surface temperature T and the free stream temperature T,,:

Ts + Ty
f= 2

Table 6: Nusselt number in forced convection external flow for multiple cases

Case Equation Notes
Flat plate, h,x 125 4
= = /2 > 0.
laminar Nu, X 0.332Re,'"Pr Pr > 0.6
Flat plate, h,x 45 1 Re, < 108
= = /3 X
turbulent Nu, k 0.0296Re,""Pr 0.6 <Pr<e60
Average over flat - 05 1033
frd . . >
plate, laminar Nu; = 0.664Re;>Pr Pr > 0.6
Average over flat
plate, both
i w Re, <108
laminar and Nu, = (0.037Re® — 871)Pr033 x =
< <
turbulent 0.6 < Pr < 60
regions

Average over
perpendicular
cylinder

Nuy = CRe]} Pro33

Re, C n
0.4-4 0.989 0.330
4-40 0.911 0.385
40-4000 0.683 0.466
4000-40000 0.193 0.618
40000-400000 0.027 0.805

0.4 < Rey <4x10°
Pr = 0.7
d is cylinder diameter

Average over a
sphere

Nug; =2+ (0.4Re3-5 + 0.06Reg'67)Pr0-4 (ﬁ

Hs

)0.25

3.5 < Rey; < 7.6 x10*
0.6 <Pr<e60
Properties evaluated
at free stream
temperature T,
except for yug which is
viscosity at the
surface temperature
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Situation: free convection

In free convection, the Rayleigh number Ra; is often used, which is the ratio of free
convection to conduction in the fluid:

_ g:g(Ts - Too)L3

Ra
L av

= Gr,Pr

where Ra; is the Rayleigh number, g is acceleration due to gravity, f is the coefficient of
volume expansion (1/T for ideal gases), T is the surface temperature, T,, is the free stream
temperature, L is the characteristic length, a is the thermal diffusivity, v is kinematic

viscosity %, G, is the Grashof number, and Pr is the Prandtl number.

Table 7: Nusselt number at steady state in free convection for multiple cases

Case Equation Notes
Vertical plate, —_— 1/4 4 9
laminar Nu; = 0.59Rq; 10* < Ra <10
Vertical plate, — 1/3 9 13
turbulent Nu, =0.1Rq, 107 < Ra < 10
. 2
. 1
Vertlgal plate, L 0.387Ra2
laminar and Nu;, =40.825+ 5
turbulent 0.492 19_6 27
1 +( > )

Horizontal plate,

upper surface of Nu, = 0.54Ra/* 10* < Ra < 107

a hot plate/ — 13 107 < Ra < 1011
lower surface of Nu, = 0.15Ra, =nha=

a cold plate
Horizontal plate,
lower surface of

a hot plate/ Nu, = 0.27Ra,’* 105 < Ra < 1010
upper surface of

a cold plate

\ 2

External flow 0 387Raé Isothermal surface,

over a horizontal Nug =40.6 + ' L T ( diameter d
cylinder 9727 Ra < 102
14+ (0.559)16
Pr
\ )
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_ 0.589Racli/4 Isothermal surface,
External flow Nug =2+ o X diameter d
over a sphere [1 N (0.469)Er Ra < 10%
Pr Pr<0.7

Electrical circuit analogy
We can use an electrical circuit analogy for Newton’s law of cooling. Remember

that:
Q
q=§=h(T5—Too)
which we can rearrange into:
) = hS(Ts — To) = ar R _ 1
Q - S co/ — RT’Convl T,conv — hS

We can combine these into circuits. For example, let’s take a heat exchanger, where
there is water flowing on both sides of a plate, with one side having hot water and the other
having cold water.

Ty

Fig. 32. Diagram of equivalent electrical circuit to heat transport across a heat exchanger.

In this case, heat is transferred through convection from the hot water to the inside
of the plate, then conduction in the plate from one side to the other, and finally convection
from the outside of the plate to the cold water. We can make an equivalent circuit of
resistors in series, as pictured, making it easy to determine the total heat flow rate:

AT AT

RT,total RT,convl + RT,cond + RT,convz

Q
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Radiation

The third mechanism for heat exchange is thermal radiation. All surfaces above 0
Kelvin emit electromagnetic radiation, and all surfaces constantly receive thermal energy
from incoming electromagnetic radiation. The rate of radiation heat transfer is governed by
the surface temperature, the surface radiation properties, and the size, shape, and
orientation of the object.

Black body radiation

A black body is a theoretical object which perfectly absorbs all light and reflects
nothing, such that it appears black, and emits the maximum amount of radiation possible
for a certain temperature. For black bodies, the radiant emittance, or the rate of radiant
energy emitted per unit area (or energy flux) is given by the Stefan-Boltzmann law:

Eb = UT4

where E}, is radiant emittance of a black body, o is the Stefan-Boltzmann constant of
5.67 x 1078 —~

m2K#%’

and T is the surface temperature.

Surface properties

Real surfaces aren’t black bodies. They typically don’t absorb all light and typically
emit less radiation than a black body. We can define the emissivity as the ratio of radiant
emittance of a real body to that of a black body.

E

SZE—b

where ¢ is the emittance, E is the radiant emittance of a real body, and E, is the radiant
emittance of a black body.

Note that, in general, emittance depends both on temperature and wavelength.
However, we will typically assume that we are working with gray bodies, which have
properties independent of wavelength, so emissivity only depends on temperature.

Now let’s turn to the case where light is incident upon an object. In this case light
can be transmitted through the object, absorbed by the object, and/or reflected. Then, we
can define three coefficients:

o Coefficient of absorption, a, is the ratio of radiant flux absorbed over the incident
radiant flux
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e Coefficient of reflection, p, is the ratio of radiant flux reflected over the incident
radiant flux

e Coefficient of transmission, 7, is the ratio of radiant flux transmitted over the
incident radiant flux

The addition of these should be 1.
at+p+t=1

According to Kirchoff’s identity, for a gray surface, the emissivity and absorption
coefficient are equal (hence why black bodies emit the maximum radiation they can; their
absorptivity and emissivity are 1):

Geometry

If we take two bodies, not all of the radiation emitted from one body will impinge
upon another. | am not getting the full concentrated power of the sun standing outside, but
only the small part of it which reaches me. To determine the fraction of emitted radiation
that hits another body, we have to take into account their sizes, shapes, orientation from
each other, and relative distance. We can concentrate these factors into a shape factor,
F,_m,which is defined as the fraction of radiant energy leaving object n that is incident
upon object m.

Note that, in general:
Fn—>m 7‘: Fm—>n
These shape factors have three relations:

1. Reciprocity relation:
AnEpom = ApFnon
where A; is the surface area of object i.
2. Summation rule: the sum of the shape factor from a body to the complete
environmentis 1, i.e. represents all the energy leaving the object.

n
Z Fm—»k =1
k=1

3. Additive rule: we can split a surface into components, in which case the shape
factor incident upon the object will be equal to the sum of the shape factors
incident upon the components. For an object n splitinto i components:
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m—>n z Fm—>j

j=1

Calculating these shape factors involves a lot of math, but thankfully others have
done the work for us and put everything into simple tables and graphs. For example, here is
the shape factor for two sheets at a right angle from each other. Other graphs can be found
in the Roselli and Diller textbook, or in the literature.

e

F|’2 = W/D
0.5 |
|
R, 0.05 = CHHH
0.4 0.1 ]
2 =
0.3 0.4 Rt —
o .6 [
T =z 0.8
w = B ———
0.2 EEEzafl 15
= 2.0
= L — 3.0 _
maSteeaict; o
T mesia — = S
= WA
0.1 0.2 0.3 040506 08 1.0 2.0 3.0 4.05.06.0 8.010.0
A

Fig. 33. Shape factor for radiation between aligned, adjacent, perpendicular rectangles as
a function of their relative sizes and separations [1].

Putting it all together

First, let’s consider a single surface, receiving an irradiation G, which is the rate at
which radiant energy is hitting the surface per unit area. This object has a radiosity J, which
is the rate at which radiant energy exits the object per unit area. Let’s find the net exchange
of energy, or net heat flux, on that surface, which is simply the difference between the
irradiation and the radiosity. Let’s assume we are at steady state, the surface does not
transmit light, and is a gray body.

Let’s clarify what happens to the surface. Some irradiation G enters the surface. Part
of itis absorbed, while another part is reflected and leaves the object. At the same time,
some radiant energy leaves the object due to thermal radiation. The radiosity is the sum of
the energy generated from thermal radiation and the reflected irradiation:

] =¢E, +pG

which we can rearrange into:
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] — €Ep
p

G =

We can replace the reflectivity p. Remember that the sum of reflectivity,
transmittivity, and absorptivity are 1. There is no light transmitted here, however, so:

a+p=1
p=1l—a
We can make use of Kirchoff’s identity (a = ¢):
p=1—¢
which allows us to rewrite the irradiation equation into:

] — €k
T 1-¢

We know that the heat flux will be the difference between energy influx, or
irradiation, and energy outflux, or radiosity:

where q is heat flux, Q is heat flow rate, and A is surface area.
We can simply substitute the radiosity we found earlier and rearrange:

J—¢By, (1—2) J—eB —¢+eB (B, —))
1-¢ 1-—c¢ 1-¢ 1—-¢  1-¢

q=]-
Then, for heat flow rate:
. E,—]
Q=qA= (1 — g)
eA
Now, let’s consider the energy transferred between 2 objects. There are objects 1
and 2, with radiosity /; and J, ,and area A; and 4,.

To find the radiation leaving surface 1 and incident on surface 2, we can use the
shape factor. The radiation leaving surface 1 is simply the product of radiosity and surface
area. Then, we multiply by the shape factor, which is the portion of radiosity incident on
surface 2:

radiation leaving 1 incident on 2 = J;A,F;_,,
The same logic applies for radiation leaving surface 2 incident on surface 1:
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radiation leaving 2 incident on 1 = J,A,F,_4

To find the net exchange between surface 1 and 2 (or the heat flow rate from 1 to 2),
we simply calculate the difference between the two:

Q.1—>2 = J1A1F15; — LA F, 4
where Q,_,, is the heat flow rate from surface 1 to surface 2.
We can use the reciprocity relation to simplify this:
Q12 = J1A1F1s — JoA1Fis = AtFi 5 — )
Ji—)2

Q.1—>2 = 1
A1F1—>2

Electrical circuit analogy

Notice how the equation for heat flow rate out of a surface is very similar to Ohm’s
law:

. E,—] AV
0=A—pr =7
(1&48) A

In this case we might consider the heat flow rate as being analogous to current and
the difference between black body radiation and the radiation leaving a gray body being

analogous to electrical potential difference. In this case, g is analogous to resistance.

For that matter, the equation for heat flow rate is also similar to Ohm’s law:

. L) Y
Q1—>2_ 1 ) 1_?

In this case, the difference between radiation leaving surfaces 1 and 2 is analogous

to potential difference, and resistance is -
151-2

We can put these resistors in series to represent to full process of energy being
transferred from object 1 to 2:
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J, ——> J,
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Fig. 34. Equivalent electrical circuit for heat exchange between two surfaces through
radiation [1].

In fact, we can create a more complicated circuits to consider systems with more
objects. For 3 objects, for example:

Elrl

EI) 3

Fig. 35. Equivalent electrical circuit for heat exchange between three surfaces through
radiation [1].

Boundary Conditions

To solve the differential equations involved in heat transfer problems, we need some
boundary conditions. There are 4 common boundary conditions. We will assume that this
“boundary”is at x = 0 for the equations.

e Constant surface temperature
T(x=0,t) =T,
Where T(x = 0, t) is the temperature at position x = 0 (atthe boundary) and at any
time t, and T, is some constant surface temperature.
e Convection at the surface, fluid temperature far from the surface (T,) is
constant.
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ST(x =0,)
q=—k——F—"=h(To ~T(x =0,1))

Where q is the heat flux, k is thermal conductivity, h is heat transfer coefficient. T,
is the temperature of the fluid far away from the surface.

e Constant energy flux at the surface

o k6T(x= 0,t)
q_qx_ 6x

Where g, is some constant heat flux.

¢ No heat flux at the surface (insulated surface)
6T(x =0,t)
1 ox

Macroscopic Approach

Once again, we can approach problems using a “macroscopic” approach, where we
ignore spatial variations in the system. This approach is well suited when we only care
about energy entering and leaving the system, but not well suited for temperature
gradients, whether we are at steady state or not.

Conservation of Energy

Since we are dealing with heat, which is energy, we only need to deal with
conservation of energy. As before, we can state conservation of energy as:

{Rate of accumulation of } _ { rate energy } {rate energy} {rate of production}
energy inthe system ) lenters system exits system of energy

We’ve already done some of the work in the fluid dynamics section, so we can start
directly with this formula for conservation of energy

num inlets/outlets
dE P . . . .
= > | (O R @+ ) pwidd + s+ Qgen — Vs — W
i Ai p

where E is the energy in the system, t is time, 4, is the cross-sectional area of the inlet or
outlet, U is specific internal energy, K is specific kinetic energy, ® is specific potential
energy, P is pressure at the inlet, p is density, Qs is heat flow rate at the surface from
conduction/convection/radiation, Qgen is rate of heat generation (for example by chemical
reactions or metabolism), WS is rate of moving boundary work, and Wf is frictional forces at
the inlets/outlets. To make notation simpler, we use + rather than separating the sum for
inlets and outlets, so the * is positive ifitis an inlet and negative if it is an outlet.
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For heat transfer, a lot of these terms aren’t important. Kinetic energy, potential
energy, frictional work, and moving boundary work are all negligible. In addition,
pressure is of negligible contribution. This greatly simplifies the equation:

num inlets/outlets

dE —~ . .
YT z if UpividA + Qs + Qgen
i Ai

We can further assume that changes in the system energy are only changes in the

system’s internal energy (potential and kinetic energy of the system remain constant).
Remember that the specific internal energy is:

U =c,(T—Tg)
where ¢, is the specific heat capacity, T is temperature, and Ty, is a reference temperature.
Then, we can rewrite the equation, replacing our internal energy terms with their

definition and using the mixing cup temperature to get rid of the integrals:

num inlets/outlets

d _ ) )
i (me,T) = Z t¢p,iTm,iPiVid; + Qs + Qgen

i
where T is average temperature and T, is mixing cup temperature.

We can also write this in terms of the mass flow rate, which is pvA:

d num inlets/outlets
E (meT) = Z iWicp,iTm,i + 05+ Qgen
i

where w is mass flow rate.

Phase Change

When a heat transfer problem involves phase changes, there are additional
considerations. When a material changes phase, it absorbs or releases heat without
changing temperature; any energy gained or lost will go towards changing its state. Thus,
we must consider the latent heat of the material, which is the energy required for it to
change state. These problems will most likely not come up in this course, since they are
rather complicated. Still, they are very important, especially in biological contexts as they
govern things such as evaporative cooling through sweat.
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Lumped Parameter Analysis

In lumped parameter analysis, we have an unsteady state problem where we take a
solid object being heated or cooled through convection at its surface, with a constant fluid
temperature. Importantly, we assume our object is a lump with uniform temperature. For
this to hold, we need the heat transfer inside the object to be much faster than heat
transfer at the surface, such that we can assume heat transfer from the core of the object
to its surface is instant. This generally holds as long as the Biot number is lower than 0.1.

The Biot number compares the rate of heat conduction within the solid to the rate of
heat convection at the surface. Be careful not to confuse it with the Nusselt number, which
deals with heat conduction in the fluid, not solid. The equations for these numbers are
almost identical, but the Nusselt number uses the thermal conductivity of the fluid, while
the Biot number uses that of the solid.

where Bi is the Biot number, h is the heat transfer coefficient, L is the characteristic length

defined as the ratio of volume to area through which heat is transferred (L = Al) ks isthe
Q

thermal conductivity of the solid, V is the solid volume, A, is the surface area through
which the solid is heated/cooled.

When the Biot number is very high, the rate of convection is faster that the rate of
conduction within the solid, so conduction will not be fast enough to dissipate the heat at
the surface, which will create a temperature gradient.

If the system is a solid (no flow in or out), does not generate heat, and temperature is
uniform throughout the solid, the conservation of energy equation simplifies to:

dT .
mcy i = Qg

We can use Newton’s law of cooling:
dT
mep - = —hS(T —T,)

where h is the heat transfer coefficient, S is the surface area, and T, is the constant
temperature of the fluid far away from the surface of the solid.

This is a first-order ODE. To solve it more easily, we can make the substitution § =
dr

. R ... do
(T — T,), and substitute the derivative with — =
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The solution is:

fede t hS
—=| ———dt
o, 0 0o Mmc
(g -
n 0;1) mey
T—-T, -

where T; is the initial temperature.

Electrical circuit analogy

Let’s cast our minds far back to RC circuits. RC circuits are simple circuits
composed of one capacitor and one resistor. The voltage across the capacitor varied as a
function of time following the equation:

|74 _t
—_—= RC
v, ¢

where V is voltage across capacitor, V/; is initial voltage across capacitor, R is electrical
resistance, and C is electrical capacitance.

Both of our equations are similar. We can define a time constant 7, and see that
t
both functions follow the function e =. This time constant is:

_ 1 _ hS
7L-_RC_mcp

We had already covered a thermal resistance to convection:

1
RT,conv = E

We can also define a thermal capacitance, which is the ability of a material to store
heat:

Cthermar = mc,
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So, our lumped parameter analysis was just an RC circuit in the end. We were once
again fooled into doing electrical engineering.

Thermal Compartmental analysis

In thermal compartmental analysis, we once again have an unsteady state problem,
but we take a well-mixed fluid chamber instead to keep the temperature uniform
throughout the fluid. In this case, any fluid leaving the system through outlets would have
the same temperature as the system. The conservation of energy equation simplifies to:

d num inlets num outlets
it (mcpT) = Z WiCpiTm; — cpT Z w; + Qg + Qgen
L L
As an example, let’s consider an insulated chamber with no heat generation, a

single outlet delivering fluid at a mass flow rate of w and temperature T;;, and a single outlet
with the same mass flow rate as the inlet. ¢, will be constant, and the chamber is well-
mixed. We wish to know the temperature of the fluid. This situation is very similar to those
you have seen in MATH 263, but they may have used concentration of a solute instead of
heat.

The equation simplifies to:

d
mep o (T) = we,Tin —we,T

dT

mo= w(Ty,, —T)

dr

I . . d
Let’s use a substitution again, withz = T;,, — T and d—: =-

dz _
mdt = wz
Solving the ODE yields:
T — Tin ==t
=e
Tl - Tin

Multiple System Interactions

You can split a system into multiple interacting subsystems. We have seen how to
deal with lumps of uniform temperature and well-mixed chambers. We could combine
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multiple of them. For example, we could have two connected well-mixed chambers, or a
lump within a well-mixed chamber. In this case, we would need to deal with a system of
differential equations.

Example:

An object at temperature T, is dropped in an insulated well-mixed fluid chamber at
initial temperature Tr,. The Biot number is small, and there are no outlets or inlets. We are
interested in the temperature of the solid and fluid over time.

The difference between this situation and the lumped analysis situation is that the
fluid temperature can change. This small difference leads to a large increase in our
headaches.

Here, the only heat transfer occurring is convection between fluid and solid. Then,
by conservation of energy, we have this equation for the solid:

dT.
M Cps d_ts = hS(Tf — TS)

and this equation for the fluid:
dT,
f
mycpr— = hS(Ts = Tr)

We need to solve the system of equations:

dT,
mscpsd—ts = hS(Tf — Ty)

dT
f
mycpp—— = hS(Ts = Tr)
Let’s start by isolating Ty in the solid equation:

MsCps AT
hS dt

Tf:TS+

We can substitute it into our fluid equation:

d MsCps dT; MsCps dT;

micor g (B + 55" ) = 0 (B =B =5 )
Ty mpc,pmgCps d*Ty dT,
Mefar YT hs der e
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My CppMgCps d*Ts dT,

S
S TS + (mfcpf + mscps)E =0
d?T, hS 14 M Cps % —0
dt? = mgcpys mecyy ) dt

Ts

This is a first order ODE. It may look second order but we can substitute a = .

dt
da hS mscC
-+ 1+—2]a=0
dt ~ mgcps MfCpr

We can solve this:

drT. hs /1+mscps)t
a=—2=_Cze M\ Mss

dt
We can integrate to find Ty:

hS ( ,mscps)
Ty = Cre ™\ ™MiCr) 4 (,

Note that we simply replaced C, with C; to make the equation less ugly. These
constants are related by:

Ca

_ hS (1 n mscps)
Mg Cps MgCpy

C1=

Now all we have to do is find C; and C, with our boundary conditions. Which are:

T,(t=0) =T,
We can directly apply the first boundary condition to the equation we’ve obtained to
find:
TSO = Cleo + Cz = Cl + C2
The second boundary condition is trickier. We can first take the solid equation and
isolate %:
dt
dT; hS
— = T —T.
dt  mgcpys U

Then, attime 0:
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dT, hS

dt le=o = MsCps (Tfo - Tso)

: dr, ., dT.
We’ve already found the equation for d—ts, so we can find d—ts l¢=0:

dT. hS ( +m$cps hS m.c
) |t=0 = Cye mscps\1 mepf)(O) =C,=— 1+ stps C,
“ MMsCps My Cpg

Putting the two equations together:

hS mec hS
— (1 +— ”S> C, = (Tro — Tso)
mscps mepf mscps

Then:

mecC mesC
¢ = ( i ) (Tfo - Tso): C, =Tso — < o > (Tfo - Tso)

My Cpy + M;Cps MeCpy + M;Cps

We can substitute these into the equation to yield:

_ hS ( ITTl C
TS TSO _ < mepf > <1 e mscps\leﬁcgi)t>
Tro — Tso MeCpr + MgCps

Note that if the mass of the fluid goes to infinity:

hS
M =1- e_mscps
TfO - TSO
Let’s rearrange this a little:
hS
M —1= _e_mscps
TfO - TsO
T=To Tro=Too_Ts=Tro _ e

TfO - Tso Tfo - TSO a TfO - TsO

Ts — Tro hS

= e MsCps

Tso - TfO a

which is what we got for lumped parameter analysis.
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Shell Balance

When there are spatial variations within the system, such as when the system isn’t
well-mixed or the Biot number isn’t small, the macroscopic approach isn’t sufficient. If the
problem is one-dimensional and at steady state, then we may use a shell-balance
approach.

General Method

1. Define a shell.

e Theshellis a small region of the fluid of interest.

e When working in cartesian coordinates, place a plane perpendicular to the
direction of the temperature gradient, covering the entire cross-sectional
area of the object, and another similar plane a little further along the
direction of the temperature gradient. Your shell is the region between the
planes.

e Incylindrical and spherical coordinates, the shell will be the space between
a cylinder (or sphere), and a slightly larger cylinder (or sphere), making sure
that the direction of the temperature gradient is along the radius.

2. Perform an energy balance.

e Using conservation of energy, list all energy entering or leaving the shell.

e Divide by the volume of the shell and take the limit as the shell volume goes
to zero.

3. Replace the conductive/convective/radiative heat flux equations with Fourier’s law,
Newton’s law, or the Stefan-Boltzmann law.

e You may need to apply boundary conditions for convection here (i.e.

constant surface temperature, constant fluid temperature).
4. Solve the differential equation.
e Apply Boundary conditions.

Example: Solid Sphere with Heat Generation

Let’s take a sphere of radius R with constant, uniform heat generation per unit
volume g,,.:- We are at steady state, and heat only travels in the r-direction.
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Uniform metabolic
energy generation

Fig. 36. Diagram of a spherical shell [4].
Here, we have two boundary conditions:

e Constant surface temperature T, :
T(r=R) =Ty,
e All heat generated in the sphere must leave through the surface of the sphere.
Since we are at steady state, there cannot be heat accumulation over time,
otherwise the energy of the sphere would change over time. The only way the energy
generated in the sphere can leave is through the surface. Thus:

Qr(r =R)S = Amet Vs

- (r = RYA4TR?) = e (57R°)

) R
qr(r = R) = CIm;t

where g, is the heat flux through conduction, s is the surface area of the sphere, and
; is the volume of the sphere.

We set up the shellin spherical coordinates to be the space between two spheres.
From conservation of energy:

{Rate of accumulation of } _ { rate energy } {rate energy} {rate of production}
energy inthe system ) lenters system exits system of energy

Since we are within a solid, the only way energy can enter or leave the shell is
through conduction. For now, let’s leave the conductive heat flux as a variable g,.. We can
then obtain the heat flow rate going in or out of the system by multiplying heat flux by area:

{ rate energy } B {rate energy

enters system exits system} = el (47r%) = Gl ar (47 + A7)%)

108



Note that (12q,) ly+ar = Grlr+ar (r + Ar)?, since the value of r evaluated at position
r + Arisr + Ar. Then, we can simplify the equation to:

rate enegy rate energy\ _ 2 2
{enters system} B {exits system} = 4n(r2qr)ly = 4ol ar

For the energy production in the system, it is simply the heat generation per unit
volume ¢, Multiplied by the shell volume. The shell volume can be simplified as 4mr2Ar,
using the same logic we used in cylindrical coordinates for shell balance in the fluid
dynamics case.

{rate of production

— 2 Apds
of energy } = 4Anr°ArQmer

Putting it all together:
0= 4n(r2qr)|r — 4n(r2qr)|r+m + 42 AT Gt

Dividing by 4mtr2Ar:

_ 1 (rzqr)lr - (rzqr)|r+Ar
0= 2 met
T Ar

Taking the limit as Ar = 0:

2 — (2
0 = iz 111’1’1 <(r qr)lr (r qr)|r+AT'> + .
< Ar-0 A’r

met

1 d .
0= ﬁ <_E (rzqr)) t Qmet

d
dar (rzqr) = rZQmet

Integrating:
3 .
Tr
r’q, = C;met + (1
— rqmet + &
qr - 3 ,rz

We can already apply one of the boundary conditions to get rid of C;. All heat
generated within the sphere must exit through the surface. If we calculated the heat flux at
the surface:
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Then, we know that:

Next, we apply Fourier’s law to replace q,:

_ d_T _ rqmet
R
We can integrate this:
7 Gmet
T = C
6k ¢

If we use the boundary condition T(r = R) = Tk, we obtain:

T—T, = g‘;t (R? —r?)

Example: Heat exchanger

Let’s apply shell balance to a heat exchanger. Some hot fluid enters a pipe at mixing
cup temperature T,, ;. This pipe is immersed within a cold fluid which flows countercurrent
to the liquid in the pipe, at a constant temperature far away from the wall T,,. The heat
transfer coefficients are h;, within the pipe and h,,; outside of the pipe. We wish to know
the mixing cup temperature T, of the fluid within the pipe as a function of the distance
along the pipe. We are at steady state, the fluid is incompressible, and all properties are
independent of temperature. In addition, the pipe wall L is very thin.
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Fig. 37. Diagram of a shell in a heat exchanger problem.
Our boundary conditions are:

e Thetemperature atthe entranceis Ty, ;:
Tn(x =0) =Ty,
e The temperature of the fluid far away from the wall is constant T, .

Applying the shell balance, we have no heat generation. There are two sources of
heat entering/leaving the shell: bulk fluid motion and convection at the wall.

_ (energy loss or gain energy loss or gain

{Rate of accumulation of } { } { }
| from bulk fluid from convection

energy in the system

On the right and left wall, there is the bulk flow of fluid at a certain temperature
entering or leaving the shell. This contributes the internal energy of the fluid entering or
leaving the shell to the overall energy balance:

energy loss or gain) _
{ from bulk fluid } = (wepTon)le = (W Tn)lesax
We can use mass balance to prove that, if the fluid is incompressible, the mass flow
rate is constant over x. Then, this simplifies to:

{energy loss or galn} = Wey(Tomly = Tonlysax)

from bulk fluid

In addition, heat is being transferred through the wall of the pipe. To reach the
surrounding fluid, heat within the pipe must first cross to the inner surface of the pipe
through convection, then from the inner to the outer surface of the pipe through
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conduction, and finally from the outer surface to the surrounding fluid through convection.
We can model this as a series of 3 resistors:

5“]
=
5 :'J
g
o sﬂ
=
= [N
[%)
g
L)
ale
-
=
£~
'2,3 %
L

T
'S

Fig. 38. Diagram of equivalent electrical circuit to heat transport across a heat exchanger

[1].

However, since the pipe wall thickness is very thin, we can ignore the resistance due
to conduction in the pipe wall. Then, the heat transfer due to convection is:

{energy loss or gain} T —=Tn (houthinPAx) (T, — o)
from convection J~ 1 41 N hgethyp /™
hinS houtS

where S is the surface area and P is the perimeter.

Putting it all together:

houthin PAx
0= WCp(Tmlx - Tm|x+Ax) + (%)( w0 Tm)
Dividing by Ax and taking the limitas Ax — 0:
dT h,,.h;P
O — _ch m ( out'tin ) (Too _ Tm)
dx houe + hin
dTm — ( houthin ) p (Too _ Tm)
dx hoye + hin/ \wc,
Let’s substitute 6 = T, — Ty, % = —Cg—x’”, and solve using the boundary condition:

ao (houthin) P p
dx hout + hin/ \wc,

o 1 x houthin P
0; 6 0 houe + hin wc,
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0 houthin p
(G =i )
0,: hout + hin WCp

— _ houthin L
M =e (hout+hin)(wcp )x

m,i

General Method

Derivation

Let’s start with a shell that is a small rectangular prism with sides of length
Ax, Ay, Az at position (x, y, z), just as before, and apply conservation of energy to it.

(X,y,2) Ay

Az

AX

Fig. 39. Shell for general heat transport [1].

{Rate of accumulation of }

{ rate energy } B {rate energy} {rate of production}
energy inthe system

enters system exits system of energy

We are again ignoring changes in kinetic and potential energy, and assuming all
energy change is in internal energy. Thus:

{Rate of accumulation of }

6 )
energy inthe system J _ 6t (mU) = 5t (prAyAZCpT)

where m is mass, U is specific internal energy (U = cpT), p is density, ¢, is specific heat

capacity, and T is temperature.

Since we are within an object, the only way energy can enter or leave the shellis
through conduction or, if the shell is within a fluid, through bulk fluid carrying energy with it.
For each face, we have to consider the effects of conduction and convection. As an
example, let’s take the bottom and top faces. For now, we keep energy flux due to
conduction as a variable gy, q,, q, depending on the direction.
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rate energy rate energy) _
{enters bottom} - { exits top } = qylyAxAz — qy) |4 ay AxAZ + (pva)IyAxAz - (pva)|y+Ay AxAz

rate energy rate energyy _
{enters bottom} B { exits top } = (ay + pryU)1,Ax0z = (qy + pvyU)ly1ay AxAz

rate energy | _ (rate energyy _ _
{enters bottom} { exits top } = (ay + pvycpT)1yAxAz = (qy + prycyT)lyray Axdz

where v; is i-direction velocity.
If we do this for the other 4 faces, we are left with:

{ rate enegy } {rate energy}
enters system exits system

= (qy + pvyc,T)lyAxDz — (qy, + pvyc,T)lysny AxDz + (G + pryc,T) | AyAz
- (Qx + pvxCpT)|x+Ax AyAZ + (CIZ + pszpT)lexAy
- (qz + pszpT)|z+Az AxAy
For energy generation, we can use a variable ¢,,,; Wwhich is heat generation per unit
volume, and multiply by volume:

{rate of production} = 4. AxAyAz

of energy

Putting it all together:

o)
AxAyAza (pcpT)
= (qx + pvxcpT)IxAyAZ — (qx + pvxcpT)|x+Ax AyAz + (qy + pvycpT)IyAxAZ
— (qy + pvycpT)|y+Ay AxAz + (qz + pvchT)IZAxAy
- (QZ + pszpT)|z+Az AxAy + C.ImetAxAyAZ

Dividing by the volume AxAyAz:

S (e, T) = (0 + PrepT)lx = (4 + pVeCpT)lvax |, (@ +pvy6pT)ly = (ay +pUySpT)lyvay
ot pept) = Ax Ay
n (qz + pszpT)lz - (qz + vaCpT)|z+Az
Az Amet

Taking the limitas Ax, Ay, Az — 0:

1) 6 6 6 )
St (pCpT) =- Sx (Qx + PUxCpT) - 8_y (qy + p‘UprT) 5z (qz + PszpT) + Qmet

o) 6 6 6 6 ) 6
St (pCpT) = - 5% (pvxCpT) - 6_y (pvprT) 52 (PszpT) T (qx) — 8_y (Qy) 5z (q2) + Gmet
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. . _ 08T,
Using Fourier’s law (qi =—k &).

1) 8 82(kT) 82(kT) 82(kT)
St (pCp ) (pvxCPT) (pvprT) (vaCP ) Sx 2 8y2 + 822 Amet

If cp, k, p are constant:

82T  8%T  §°T

5T 5T ST 6T ,
522 T ay2 T gz | T dmet

pPCp—=- 5c= P |5, + v, 6y+v28

Other Coordinate Systems
Cylindrical:

6T 6T vg(ST 6T+ 16(8T)+162T+62T+,
Pl st = P g Y e T s Y e \Tar) T2 sez oz |t dmer
Spherical:

5T oT  vodT vy OT
Pose = PP " 5r T 50 rsinf 8¢
15 6T 1 6, 6T 1 82T]
r2 &7 (r _)+rzsin9@(5m9@)+rzsin296T&]+qm€t

+k|= o7

Additional Topics

Fins

Afinis an extended surface which increases the surface area through which heat
transfer happens. Blades on an engine, fingers, and CPU air coolers are all example of fins.
At steady state, if we assume temperature only varies along the length of the fin, we can

describe fins using a shell balance approach. The shell will be the distance between two
planes positioned along the length of the fin.

115



h, T

dem—h Pdx(T-T,)

€0

x —| dxfe——

L

Fig. 40. Shell for a fin and heat inflow and outflow through conduction and convection at
the surface [1].

There are two sources of heat transfer and no heat generation. At the left and right
sides of the shell, heat enters and leaves through conduction. At the top and bottom of the
shell, heat leaves through convection (we assume radiation is much less important than
convection). Then, from conservation of energy:

0= le - Q|x+Ax - Qconv

where Q is the heat flow rate from conduction, and Q,,,, is the heat flow rate from
convection.

We can replace the convection term with Newton’s law, divide by Ax, and take the
limitas Ax — 0:

0= le - Q|x+Ax - h—PAx(T - Too)

0= le - Q|x+Ax _ hP(T _ Too)
Ax
d'
—Q = hP(T —-T,)
dx

where h is the heat transfer coefficient, P is the perimeter of the fin, T is temperature, and
T, is the temperature of the fluid far from the fin.

If we replace the conductive heat flow rate with Fourier’s law, and assume the
cross-sectional area and thermal conductivity are independent of x:
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d (kA dT) = hP(T —T,)

dx\""Cdx) *
42T hP
T

where A, is the cross-sectional area and k is the thermal conductivity.

We’ll simplify this by noting thatA% = :sz = %, and by replacing:—i = %With a
4

variable m?:

d?T 4h
—— = m?(T — To), 2 —
PR ) M=
Now all that is left is to solve this. To do this, we need 2 boundary conditions. The
first is obvious: the temperature at the base of the fin is the temperature of the bulk

material from which the fin extends, which we can call Ty:

The second boundary concerns the end of the tip, at length L, and depends on the
situation. These are three different second boundary conditions, which give different
results. Here, the conditions and their results are listed. The problem will be solved for the
first listed boundary condition further below, and you should be able to do the second by
yourself, but the third is just too long, so only the result will be given.

1. The tipis insulated: no heat transfer at the end of the fin.

) = de| _ 0
Q L — dx L —
The resultis:
T(x) — To B cosh(m(L — x)) 4h

2

To—Tsw  cosh(mL) ™= kd
2. The finis very long: there is enough surface area for convection such that the

temperature at the end reaches the fluid temperature at infinity:

T(x = ©) =Ty
The resultis:
T(x)— Ty, — 2 4h
TO - TOO ’ kd
3. Thefinis of finite length: there is convection at the end.
dT
—kAcah =hA.,(T(x=1L)—-T,)

The resultis:
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T(x)—Tp cosh(m(L —x)) + %sinh(m(L —x)) 4h

To — T h . ’ ~ kd
0 cosh(mL) + ik sinh(mL)

Solving for the first case

We wish to solve the first case, where the tip is insulated. Thus, we want to solve:

d?T 4h
—— = m?(T — To), 2 —
o - m( )y M=
with boundary conditions:
dT| —0
dx '*
We can start by changing variables 0 = T — T, % = Z—i
d?e )
ﬁ_ m<6 =0

This is a second order ODE that we should be able to solve. The characteristic
equation is:

And the roots are +m, which we know is positive since i—d must be positive. So the

solution is:
0(x) = Cie ™ + C,e™
Now let’s apply those boundary conditions. For the first BC:
0(x=0)=T,—Tp =C, —C,
Co=(To—To) —
For the second BC, we first find the derivative of 8(x):

de -mx mx
vl —Cyme + mC,e

Atx = L:

do dT

E'L = ElL =0=—-Cme ™ +mC,e™
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0=—Cie ™ + (C,e™
Replacing C, with the expression we found with the first BC:
0=—Ce™™ + ((Ty — To,) — C;)e™*
Cie ™ + Cle™ = (T, — T,,)e™

(TO - oo)emL
17 p-mL + emL

eX+e™*

We can simplify this a little with the definition cosh x =

(TO - oo)emL
€= 2 _
2 cosh(mlL)

Then, we can find C,:
(TO_ oo)emL
Co =Ty —Ty) ——————
2= (To ) 2 cosh(mlL)

Putting this back in the equation:

Ty — Ts)e™t
Ty ) e~mx 4 <(T0 ~T,)—

(To — To)e™: g
2 cosh(mlL)

00x) = 2 cosh(mlL)

Let’s rearrange this:

Ty — Ty )e™t Ty — Ty )e™t
( 0 ) -mx ( 0 ) eMmx 4 (TO_Too)emx

O(x) = S —F——e T — 2
() 2 cosh(mlL) € 2 cosh(mL)
T(x) _ Too emLe—mx _ emLemx
= +e™
To — T 2 cosh(mlL)

T(x) =T, e™e ™ —e™e™ e™(2coshml)

To— T 2 cosh(mlL) + 2 cosh(mlL)

mLemx emxemL + emxe—mL

T(x)—To _ eMleg=mx _ o N
Ty — To 2 cosh(mlL) 2 cosh(mlL)

T(x) =T, eMbe ™ 4 emxg=ml  m(l-2) 1 p-m(L—x)

To — To 2 cosh(mlL) B 2 cosh(mlL)

T(x)— T, B cosh(m(L — x))
To—T,  cosh(mL)
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Unsteady State Symmetrical Internal Thermal Gradients and Heisler Charts

Let’s consider a symmetrical slab of thickness 2L, with no internal heat generation,
and try to obtain the temperature distribution along its thickness. We are not at steady
state. We will treat this slab as being much taller and wider than its thickness, such that we
can considerita 1D problem.

oo}

Fig. 41. Diagram of a symmetrical slab with convection at the surface [1].

Let’s use the general equation.

ST ST oT o’ 52T s2r)
Porst = P 5 T gy, +”25] 5x2 Toyz Tz | T dmet

. 8T 8T ST . .
We can remove all convective terms ( pc, vy -t vy~ +v,~[)sinceweareina
X y z

solid, all terms with y or z since we are dealing with a 1D problem, and the heat generation

term Gpmet-
oT _ %1
P 5t = o2
5T 8T ok
st~ Yoxz’ a_pcp

where « is thermal diffusivity.

We need three boundary conditions. For the first, we can say that the initial
temperature of the slab was a uniform T;. For the second, the fact it is symmetrical means
that the maximum or minimum temperature must be at its center. For the final boundary
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condition, we can say that the slab is exchanging heat with the environment through
convection at the edges, and the temperature of the environmentis T, .

T(x,t = 0) = Ti
6T
a|x=0 =0
6T
_a |x=L = h(T(x = L, t) - Too)

Now, let’s scale the equation. Unlike previously, the goal of scaling won’t be to find
which terms can be ignored. Instead, we want to write the equation in dimensionless terms
both to make it easier to solve and to make this equation applicable to a wide range of
situations. As we will see later, the equation has already been solved by someone else who
made handy charts; but they have solved it in terms of dimensionless numbers to ensure

that their charts could be used for any symmetrical slab with no heat generation and these
boundary conditions.

We scale temperature with the ratio of the difference between internal and external
temperature, and the difference between initial temperature and external temperature.

T—-Ts

0 =
T, — Ty,

For the length, we can simply divide it by the length of the slab.

For the time, we can divide it by the Fourier number, which is the ratio of time to

thermal diffusion time Fo = ‘Z—Zt If the Fourier number is around 1, heat should have had
time to reach length L.

. at
t :FO:L—2

That takes care of all our variables. We can replace the variables in our differential
equation:

(Ti _Too) 60" _ (Tl _Too) 526"
(L_2> st YT 12 5x?

a

s6* 520"
St* - 53(*2
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As we can see, this gets rid of the a term.

For the boundary conditions:

6*(x*.0) =1
60"
§|x*=o =0

o0 ey = BiO(1LF0),  Bi="t
6X* x*=1 — l ,110), l ks

The equation we have to solve is the heat equation, which you have probably seen in
MATH 264. The answer is an infinite Fourier series of the form:

. c a2 i 4 sin A ‘
0" = Zl Cpe AnFo cos(A,x*), C, = m, A tan A, = Bi
n=

As you can see, this is a very long equation. Worse, it needs infinite terms. However,
we are engineers, and we don’t need exact solutions. Our kind and generous friend Heisler
approximated these and made 2 simple charts. The first shows the temperature at the
center as a function of time, and the second shows the temperature inside the slab relative
to the center temperature. Heisler only used one term, since the poor guy was doing this
backin 1947, so the actual Heisler charts are only good enough if the Fourier number is
higher than 0.2 (Fo > 0.2). In the age of supercomputers in our pockets, more precise
“Heisler charts” are available, including in the Roselli and Diller textbook.

Unsteady State Semi-infinite Internal Thermal Gradients

We are again preoccupied with the unsteady state temperature distribution within
an object, but instead of treating it as symmetrical, we will assume it is semi-infinite, so the
object starts at x = 0 and goes on to infinitely high x. Our starting equation is the same as
before:

5T 8°T k
5t~ “oxz * pCy

Our boundary conditions are different. The first is, once again, that the material is at
a uniform initial temperature T;. The second stems from the semi-infinite geometry: since
the object is infinitely long, we can assume that heat will never have enough time to reach
the infinitely far end of the object, so it will always stay at the same temperature T;.

T(x,t = 0) = Ti
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T(x =00,t) =T;

We need a third boundary condition. As in the fin case, we have three possibilities

for this third boundary conditions. The boundary conditions and their respective results will

be listed below. All of these solutions use the error function, defined as:

f zfxﬂ%
errx = — e
Vil ¢

Table 8: Solutions to the unsteady state semi-infinite thermal gradient problem for multiple

boundary conditions

ox

Boundary condition Result
Constant surface temperature T T(x,t)—Ts erf( X )
T(x=0,t) =T, T; — T 2+/at
Constant heat flux at the surface g, at
2q; |— x?2
k5T| T(x,t) " e tat (1 f ad )
—kk—on = f = at ——— (1 —er
Convection at the surface
T(x,t) =T,
6T ,6) L=1—erf ad
—k——lx=0 = h(T(x =0,t) — Ts,) To —T; 2+at
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Appendix

Table of Dimensionless Numbers

Dimensionless

Equation Ratio
Number
) ~hL Ratio of thermal convection at the
Biot Number Bi =— L .
ks surface to conduction inside an object
i at Ratio of time elapsed to time scale for
Fourier number Fo=— . .
L? heat diffusion

Grashof number

GTL =

Ratio of buoyant to viscous forces

Graetz number

d
Gzy = ZRedPr

Ratio of heat advection to conduction
for entrance length

hL Ratio of thermal convection at the
Nusselt number Nu=— o )
ks surface to conduction inside the fluid
Cpk vV Ratio of momentum diffusivity to
Prandtl number Pr=—=-— T
ki  «a thermal diffusivity

_ gﬁ(TS - Too)L3

. Ra, Ratio of free convection to thermal
Rayleigh number av . .
diffusion
Ra; = Gr Pr
pvl _ vl o :
Reynolds number Re, =— = > Ratio of inertial forces to viscous forces

Substantial derivative

Let’s imagine a skydiver (you can consider this diver to be Super Grover). We wish to

know the change in temperature this diver feels as they fall. The ambient temperature

depends both on time, so temperature can change throughout the day, and space, so the

temperature can be colder at higher altitudes for example. Then, the temperature the diver

feels depends on their location in time and space, and so how the temperature they feel

changes depends on how they move through time and space. Let’s derive the substantial
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derivative using the example. The change in temperature the diver feels with respect to
time is the substantial derivate %.
dT DT
dt Dt
We can use the multivariate chain rule to split the total derivative into its partial
derivatives:

DT dT(t,x,y,z) _dt ST (t, x,y,2) N dx 8T (t,x,y,z) N dy 8T (t,x,y,z) N dz 6T (t,x,y,z)

Dt dt dt &t dt  6x dt &y dt 6z
% is obviously just one, and %,Z—f,% depend on the path that the diver takes, and are the

x, Y, z velocity of the diver v,, Vy, Uy. This simplifies to:

DT 8T(t, x,y,2)

ST (t, x,y,2) 8T (t,x,y,2) 6T (t,x,y,2)
— = — 2 4y +v
Dt ot

8x Y Sy z 8z

+ v,

We can simplify this using a dot product:

DT_(ST_I_( ) <5T ST 6T>
Dt ot V) N5y 5y 5z
DT _oT .

Dt ot ¥

We can generalize this for any scalar or vector quantity @, not just temperature:

D® 6P

—=—+47v-V®
Dt ot

If we were to apply this to velocity:
DV 67 -
pt ot Y

We can express the velocity a particle feels from knowledge of the velocity vector
field. We can also express the Navier-Stokes equation more concisely using the substantial
derivative.

Dv

paz,uvzﬁ—VP+p§
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Summary of Equations

Fluid Dynamics

Name Equation
Newton’s law vy
Tyy = U——
of viscosity e = H Sy
S lified d num inlets num outlets
Implifie _m _ Z ' o z
conservation of dt - p<v1n>Am p(vout)Aout
i=1 j=1
mass Assumptions: uniform density across the inlets and outlets, impermeable walls
S lified di num inlets num outlets
M p _ 2 — 2 — - =g
conservation of | df Z (piKyi(v)” + Py)Aje;, — z (pjK2j(v);* + P;)Aje; + mg — R
i=1 j=1
momentum Assumptions: density and pressure uniform at entrances and exits.
— +—== (K3in(vin>2 - K3out(vout>2) + g(hin - hout) + —
Engineering w . w2 . . . . .
Bernoulli Assumptions: steady state, isothermal, incompressible fluid, no chemical
reactions or heat through surfaces, energy and pressure are uniform across
cross-section, single inlet and outlet.
i
K constant (v )

i

Friction loss

E, L (1
w =Y @
num fittings num conduits

Ey, 1 2 L; 1 2
W = Z Kw,ii(”out,i) + Z 4]3' D_’jji(v)
i=1 j=1 §
_ av
Compliance C =
d P,
AP
Electrical Qv = R
circuit analogy 8L ! 12ul
to fluid fl =—— (ci [ = [ [
o fluid flow Ry —— (circular conduit), R Bd3M, (noncircular conduits)
Continuity D v-r=0
equation and P = uvzv — VP + pg

Navier-Stokes

Assumptions: isotropic, incompressible, Newtonian fluid.
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Navier-Stokes in all coordinate systems

Cartesian
dv,  Ov, Sv,
& 8y 8z
SV, N ( SV, N 85V, N 6vx) 82v, N 8%v, N 8%v,\ OP N
v % %
Pst TP\"sx T sy TV, ) TH k2 T eyz T ez | T 6x ' PYx
Sv,, Sv Sv Sv 8%v, &%v, &%v 5P
y y y y y y
Y 4 +v,—2 +v = +—2+ +
Pst p( 5x | Vay TV 62> “<5x2 sy2 oz ) oy P9
5v, N ( 5v, N 5v, N 6172) 8%v, N 8%v, N 8%v,\ 6P N
v v % = -—
Prst TP\ sy T sy TVss) TH sxe T ey2 T sa2 ) 52 PO
Cylindrical
168 186 5
- ) +-—FWe) +—=-(v,) =0
I'ST'( r) T'SH( 6) 6Z( z)

Sv N v, vy 6, v§+ sv,\ (8 ( . 1 8%v, 2 8v9+82 6P+
Pt "P\"sr T e T T T Vs 51 r6r 2502 r2 o0 ' 622) or  PIr
Svg Svg VbV Vg 5179) (818 168%vy 2 6v, &%vy\ 16P

P 5t +p<”r 5 a0 e ) TR ee\rer TV ) T ser Trase Tz ) rea P9
6vz+ ( Sv, vy 6vz+ 6vz) (18 ( 6vz>+ 1 82vz+82vz 6P+
Pst TP\Usr T 50 T Vs ) T\ Fer\" ar ) T r2 502 T 622 5z " Pz
Spherical
16 1
2 _
—— (v + Vg sin 6 + =0
5 () 080( 0 ) sin 6 8¢ vs)
5v, Sv, vedu, Vi+VE vy v, - 2 8V o 1 8vy 5P
Pt TP\ 5 T e T ¢ rsind 8¢ v\t se -+ Vo oo + sinf d¢ T TPYr
6179 6179 Vg 6179 U(f) 6176
P75t +P(”rﬁ+?(”r+ﬁ)+rsme(ﬁ‘%w59))
) 2 8v, 1 Svy\ 16P
=u VU9+ Zﬁ—m(vg+2cosﬂ—¢) ——E+pg3
6174) 6U¢ U96U¢ Ud’ (S
p 5t +p(vr o +?ﬁ 7Sind E-FUTSIHQ-FU@COSH
_ v 1 9 si 961@ ) 6179 1 6P
—H vd’_rzsinze(vd’_ st 5 co 6(;[)) _rsineg-*—pgd’
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Heat Transfer

Name Equation
Q 6T
Fourier’s law 1=35= "5
of conduction 0 ST
1=5= %%
_Q_
Newton’s law q= i h(T, — T,) (external flow)
of cooling )
q= % = h(T, — T,,,) (internal flow)
Radiative heat Q .
transfer q=35=éT
Electrical 0 = AT
circuit " Ry
analogy
Resistances In (;—"
(conduction R; = — (cartesian conduction), R; = = (cylindrical conduction)
and Ak 1 2nkL
convection) Ry = S (convection)
. E,—J
Radiation e
electrical ( eA )
circuit Q Jhi—12
analogy 1-2 1
A1F1—>2
num inlets num outlets

Macroscopic
conservation

d _ . .
E (meT) = Z Wicp,iTm,i - z Wicp,iTm,i + Qs + Qgen

of mass i i

General

cartesian 6T 6T oT oT 8%T 68T 6°T .
conservation Porse = P [Ty W oy T Ve s TR 5z Ty T oz | T dmer

of mass
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General conservation of energy in all coordinate systems

Cartesian
5T ST 6T 82T 82T &8°T]

Perse = P Vs T, TV, ] 572 5yz T 52| T Tmet
Cylindrical

6T oT v96T ] 15( 5T)+152T+52 4

Porse = TP s R I 2567 T 52|t dmet
Spherical
6T oT vedT vy O8T7 16(26T)+ 1 8(_ 96T)+ 1 8°T N
P e = PP "5y T 66 rSinf 8¢ 25r\" 6r) Trzsing oo \>" " 50) T 72 sin? 0 52 Gmet

129



Bibliography

[1]1R. J. Roselli and K. R. Diller, Biotransport: Principles and Applications. New York, NY:
Springer New York, 2011. doi: https://doi.org/10.1007/978-1-4419-8119-6.

[2] Wagner, C. E. Lecture Slides. “Lecture 4”. BIEN 314: Transport Phenomena in
Bioengineering, Department of Bioengineering, McGill University, Montreal, Can.

[8] Wagner, C. E. Lecture Slides. “Lecture 10”. BIEN 314: Transport Phenomena in
Bioengineering, Department of Bioengineering, McGill University, Montreal, Can.

[4] Wagner, C. E. Lecture Slides. “Lecture 21”. BIEN 314: Transport Phenomena in
Bioengineering, Department of Bioengineering, McGill University, Montreal, Can.

130



