

Preface
Welcome to the BIEN350 — Biosignals, Systems and Control official course-pack! This
document has been prepared by the Bioengineering Undergraduate Student Society (BUSS)
to best assist you as you make your way through the course. The course-pack addresses
the material according to an objective-based approach. This means that key concepts from
each lecture are listed and expanded upon.

The course-pack is organized into four different parts:
● First, you will find tips and tricks for success in the course.
● Then, “primer” information has been included on complex numbers, MATLAB, and

circuits. This will refresh your memory of topics that you should be familiar with as
you begin the course.

● Finally, you will find course material information, such as explanations, notes, custom
figures, and examples organized to directly respond to each lecture’s topics.

Please note that this document was created using source material from the Fall 2019 and
Fall 2020 semesters. Due to the ever-changing nature of courses offered by the Department
of Bioengineering at McGill, it is possible that parts of this course-pack no longer accurately
reflect the current contents or organization of the course. In case of doubt, refer directly to
the course instructor, Professor Georgios Mitsis.

This course-pack could not have been produced without the help of outgoing BUSS
Vice-President of Academics Anna Ciprick (2020 — 2021) and incoming BUSS
Vice-President of Academics Jake Pringle (2021 — 2022).

Written and designed by Abdullatif Hassan and Alexander Becker
Reviewed by BUSS

MATLAB Primer

Introduction to MATLAB
MATLAB stands for Matrix Laboratory. It is a popular scientific research tool that is
particularly useful for simulation applications. There exist various toolboxes for different
research interests such as the statistics toolbox, the signal processing toolbox, the mapping
toolbox, and the image processing toolbox.

Setup
Using MATLAB is free for McGill students. To download and install MATLAB, go to
https://www.mathworks.com/login?uri=%2Fmwaccount%2F and start by creating a
Mathworks account using your McGill email address. Once you have an account, follow the
on-screen instructions to obtain your license and download MATLAB. As an aside, the
following webpage lists all the software students and faculty have access to while at McGill:
https://mcgill.service-now.com/itportal?id=kb_article&sysparm_article=KB0010741.

Once you have MATLAB installed on your computer, you are ready to start learning the
basics. The following image shows the MATLAB integrated development environment (IDE)
window. The configuration of the smaller “sub-windows” may be different for you, but they
can be moved, resized, collapsed, and expanded, allowing you to create your preferred
layout. The sub-windows are the following:

(A) The current folder pane shows the folder your script is currently located in. It can also
allow you to browse the contents of your folder tree without leaving the MATLAB
environment.

(B) The workspace pane lists all the variables currently loaded into RAM along with their
values. Unlike many other popular programming languages, MATLAB’s variables
persist after the end of a program’s execution. Variables must be intentionally cleared

https://www.mathworks.com/login?uri=%2Fmwaccount%2F
https://mcgill.service-now.com/itportal?id=kb_article&sysparm_article=KB0010741

from the workspace, whether this be done manually or programmatically. Closing
MATLAB will also clear the workspace.

(C) The editor pane allows you to create repeatedly-used scripts and functions. This is
roughly equivalent to the environment you would use to write code in most other
IDEs.

(D) The command window is used to type shorter commands and perform quicker
operations. It also outputs the results of any commands or scripts. In this respect, it is
similar to a command line console.

Using MATLAB
All variables in MATLAB are matrices. A single number, for example, is simply a 1x1 matrix.

● Vector initialization examples:
○ Row vector → R = [1,2,3,4] or R = [1 2 3 4]

○ Column vector → C = [1;2;3;4]

● Matrix initialization example:

Since MATLAB is based on matrices, it handles matrix operations very well.
● Matrix addition and subtraction (the matrices must be of the same size)

● Matrix multiplication will work if the matrices obey the matrix multiplication conditions.

● Element-wise multiplication (the matrices must be of the same size) can be
accomplished as follows. Note that multiplying a matrix by a constant does not
require the period.

● Matrix inversion: N = inv(A)
● Matrix transpose: T = A’
● Get the size of a matrix (including one-dimensional vectors): S = size(A)

To access information in MATLAB matrices, you can use parentheses along with the
“location” of the data you would like to access. Contrary to most other programming
languages, these locations (indices) in MATLAB begin at 1, not 0.

● Access one specific value: A(3,7) accesses the value at the third row, seventh
column of matrix A

● Accessing multiple values can be done using the colon operator.
○ Access an entire row: A(3,:) accesses the entire third row (read as “row three,

all columns”).
○ Access an entire column: A(:,7) accesses the entire seventh column (“read as

“column seven, all rows”).
○ Access a range of data: A(2:5,7) accesses rows 2 through 5 (inclusively) of

column 7.

The colon operator can also be used to define matrices.
● A = 1:10 → A = [1,2,3,4,5,6,7,8,9,10]
● A = 1:2:10 → A = [1,3,5,9], the 2 is used to “jump” to every second number in the

range. Not including this “middle” number defaults its value to 1, as can be seen in
the first example.

The logspace(a,b,n) and linspace(a,b,n) functions can be used to generate vectors of n
elements logarithmically and linearly spaced, respectively, from a to b (inclusively).

Certain key MATLAB functions allow you to create special, very useful matrices.
● zeros(m,n) → create an mxn matrix of zeros (this is often used for memory

preallocation when particularly large matrices are required)
● ones(m,n) → create an mxn matrix of ones (this is often used for memory

preallocation when particularly large matrices are required)
● eye(n) → creates an nxn identity matrix

To make your code more understandable to readers, you can add comments. Comments
start with a percentage symbol (%). Comments can span entire lines or be included at the
end of a line of code. To comment out a line (turn a line of code into a comment), you can
use the “ctrl+r” shortcut (or possibly the “ctrl+/” shortcut). To undo this action, you can use
the “ctrl-t” shortcut.

When a choice is required in a script, if/else statements can be used. As a general rule, the
format of such a statement is the following. Note that the “else if” and “else” branches are
optional. Furthermore, multiple “else if” branches can be used.
if BOOLEAN_EXPRESSION

CODE
else if OTHER_BOOLEAN_EXPRESSION

CODE
else

CODE
end

The boolean operators in MATLAB are similar to those used in other programming
languages with a few exceptions.

● & → AND
● | → OR
● ~ → NOT
● ~= → NOT EQUALS
● == → EQUALS
● Logical 1 → TRUE
● Logical 0 → FALSE

Again, as is the case in most other programming languages, “for” and “while” loops are very
popular.

● “For” loops (where i is incremented at every loop according to the range 1:n)
for i = 1:n

CODE
end

● “While” loops (the loop will continue as long as the CONDITION is true)
while CONDITION

CODE
end

Besides being used for separating columns in matrix definitions, semicolons are used at the
end of lines of code to suppress output. As MATLAB is an interpreted language, it executes
each line of code as an independent command as the line is read. As such, the result of
every line is output to the command window unless a semicolon is used to suppress that
output. At a minimum, as good practice, typically:

● Use semicolons at the end of lines inside loops;
● Use semicolons at the end of lines that would otherwise output particularly large

variables;
● Do not use a semicolon when the line computes the final result of interest to you.

Plotting is a relatively simple task in MATLAB. The following are a few key commands to
keep in mind.

● figure(n) → creates a new figure and assigns it number n (note that leaving the
parentheses empty will simply increment the previous figure number by one)

● plot(x,y) → plots a connected graph of vector x versus vector y (note that these
vectors must be of equal length)

● xlim([a b]) → sets the x axis bounds to start at a and end at b
● ylim([a b]) → sets the y axis bounds to start at a and end at b
● title(“title”) → sets the title of the graph to “title”
● xlabel(“x axis”) → sets the x-axis label to “x axis”
● ylabel(“y axis”) → sets the y-axis label to “y axis”

“Subplotting” can be used to group graphs together. The function subplot(m,n,p) divides the
figure into an mxn grid of plots. “p” specifies the location on the grid of the plot function that
follows it. For example:

● figure(1)
● subplot(1,2,1)
● plot(x1,y1)
● subplot(1,2,2)

● plot(x2,y2)

Other useful plotting functions include the following:
● scatter(x,y) → plots a scatter graph of vector x versus vector y
● legend(“A”, “B”, ...) → assigns legend labels to the curves and distributions in the

respective order they were added to the figure
● text(x,y,”text”) → adds text to a figure at position (x,y)
● hold on → allows you to stack multiple curves and distributions onto a single figure

Functions are blocks of code that perform one particular task and that are often reused.
MATLAB functions can be included at the end of scripts, or within their own .m files. Note
that function files must be included in the same folder as the script that uses them.
Furthermore, the name of the file must be the same as that of the function. The format for
defining a function is the following:
function [output_variable1, …] = function_name(input_variable1, …)

CODE
end

MATLAB in BIEN350

Plotting 2D time signals can be done as follows:

The following steps can be used to create a linear regression:
(1) Use scatter(x,y) to plot the data
(2) Use coefs = polyfit(x,y,1) to obtain the slope and y-intercept of the line of best-fit
(3) Construct the line of best-fit by using line = coefs(1)*x + coefs(2)
(4) Plot the line of best-fit
(5) Use fit = fitlm(x,y) to obtain the linear best-fit model
(6) Use fit.Rsquared.Ordinary to obtain the R-squared value of the fit

The tf() function is a powerful tool for building systems like those used in BIEN350.
sys = tf([transfer function numerator],[transfer function denominator])

Other useful MATLAB commands for BIEN350
The following are a number of other commands (functions) that may be useful throughout
BIEN350:

● impulse(sys) → input a transfer function and it outputs the impulse response of the
system with that transfer function (the system sys is the output of the tf() function)

● step(sys) → same as impulse but outputs the step response
● stem(X,Y) → makes a discrete plot for Y as a function of X (stem(Y) also works,

plotting Y on the unit x-axis)
● freqs(numerator, denominator, w) → establishes a frequency domain response for

a transfer function with a certain numerator and denominator; w is the range of
angles on the x-axis

● abs(h) → returns the magnitude plot of the frequency response; h must be the output
of a freqs() function used previously

● mag(h) → returns magnitude of the frequency response h
● freqz(numerator, denominator, n) → similar to freqs() but in discrete time
● bode(sys) → plots the magnitude and phase bode diagrams of a system

● [numerator, denominator] = butter(n, wc) → returns the transfer function
coefficients for a nth degree butterworth filter with cutoff frequency wc

● [n,Wn] = buttord(Wp,Ws,Rp,Rs) → returns the order and cutoff frequency of a
butter filter that has the given input characteristics (outputs the inputs you need to
subsequently pass to the butter function)

● [numerator, denominator] = cheby1(n, Rp, wp) → same as butter() but for the
chebychev filter; note the different inputs; note that we can also use [z, p, k] as an
output format instead of [numerator, denominator], giving the zero-pole-gain profile

● [n, Wp] = cheb1ord(Wp, Ws, Rp, Rs) → similar to buttord() but for the chebychev
filter

Note that you can also consult the MATLAB documentation online for more information on
the above functions, as well as any other function you may want to use. To access the
documentation, go to https://www.mathworks.com/help/matlab/. If the official documentation
doesn’t answer all your questions, Google is your friend!

https://www.mathworks.com/help/matlab/

Complex Numbers Primer

Introduction to complex numbers
Complex numbers are based on the imaginary number, often referred to as i, or j in
engineering settings (to avoid confusion with the î unit vector).

Complex numbers are denoted by Z. Contrary to real numbers, complex numbers have two
components: magnitude and phase. These can be represented according to two different
notations.

1) Cartesian Notation: where a and b are real numbers.
○ a is the real term
○ jb is the imaginary term

○ The magnitude of Z is given by

○ The phase of Z is given by
○ Consider the two special cases:

■ Z is a purely real number when
■ Z is a purely imaginary number when

2) Polar Notation: where R and theta are real numbers.
○ The magnitude of Z is given by
○ The phase of Z is given by
○ Consider the two special cases:

■ Z is a purely real number when

■ Z is a purely imaginary number when

Properties of complex numbers

Complex conjugates
1) In Cartesian notation, the complex conjugates have the same real part but opposite

imaginary parts.

2) In polar notation, the complex numbers have the same magnitude but opposite
phases.

Euler’s formula
Euler’s formula, also known as Euler’s relation, allows us to transition between Cartesian
and polar notations. It is defined as the following:

Consequently, we can derive two key equivalences for trigonometric functions.

Introduction

Signal: A quantity (dependent variable) that changes with respect to another quantity(ies)
(independent variable)

System: Any function that maps a set of inputs (x) to a set of outputs (y).

Some types of signals:

1) Temporal: Time is the independent variable (almost all signals you'll see in BIEN

350). Example: ECG

2) Spatial: Space is the independent variable. Example: Photograph

3) Spatiotemporal: Both time and space are independent. Example: Video

Digital vs Analog

Digital refers to a quantity being discrete whereas analog refers to a quantity being
continuous.

Time versus Frequency Domains

In BIEN 350, we deal with temporal signals in 2 different domains:
1) Time domain: Tells us how the signal behaves with respect to time (the original signal

itself)
2) Frequency domain: Shows us the decomposition of this signal into different frequency

waves and the strength of each of those frequencies.
We can convert between time and frequency domains using Laplace, Fourier, and
Z-transforms (will appear later in the course)

Basic operations on signals

Basic Categories of signals

CT Exponential Signals

A CT exponential time signal can be written in the following generic form:

The real part of , is responsible for the exponential increase or decay of the signal whereas
the imaginary part accounts for the oscillation which happens at frequency .

The fundamental period of an oscillating CT exponential signal is .

DT Exponential Signals

A DT exponential signal can be written in the form .

Similarly to CT exponential signals, the magnitude of ‘a’ characterizes the exponential behavior
of the signal and the phase (imaginary part) characterizes the oscillations. Additionally, if ‘a’ is
replaced by a negative real number, this would result in alternation behavior of the signal.

The fundamental period of an oscillating DT exponential signal is , where k is the
smallest integer for which N is a whole number.

System Interconnections

System Properties

I. Memory:
A. Description:

STATIC: Output only depends on input at present time (memoryless)
DYNAMIC: Output depends on input at past and/or future inputs

B. Math examples:
STATIC:

DYNAMIC:
C. How to prove:

1. Classic proof: to prove static, the input must be in the form of x(t) (i.e. the
‘t’ inside should be intact) AND there should not be integrations over time.
Otherwise the system is dynamic. Dynamic systems can also be proven
by providing a counter example.

2. Proof using the impulse response: → static

II. Causality:
A. Description:

CAUSAL: Only depends on past or present inputs
NON-CAUSAL: Depends on future inputs

B. Math examples:
CAUSAL:
NON-CAUSAL:

C. How to prove:
1. Classic proof: To prove a causal system, the time values inside the

parentheses of the input x() must be less than or equal to t AND in case
there is an integral in the system, this integral must not cover any interval
beyond t. Otherwise, the system is non-causal. Non-causal systems can
be also proven by providing a counter example.

2. Proof using the impulse response: → causal

III. Stability (BIBO):
A. Description:

STABLE: If the input is bounded (i.e. finite), then the output must also be
bounded (i.e. if , then)
UNSTABLE: Does not obey the above.

B. Math examples:
STABLE:

UNSTABLE:
C. How to prove:

1. Classical proof: easier to prove unstable through a counter example.
Stable systems can be proven by demonstrating in the system equation
that the output stays bounded for bounded inputs.

2. Proof using the impulse response:

IV. Invertibility:
A. Description:

INVERTIBLE: If x(t) maps to y(t), then knowing y(t), we can always find a unique
x(t). In other words, there is a one-to-one mapping between the input and the
output.
NON-INVERTIBLE: Does not obey the above

B. Math examples:

INVERTIBLE:

NON_INVERTIBLE:
C. How to prove: Easier to prove non-invertible through a counter example. To

prove invertible, one can find a unique form for x(t) in terms of y(t).

V. Time Variance:
A. Description:

TIME-INVARIANT: A timeshift in the input leads to the SAME timeshift in the
output.
TIME-VARIANT: Does not obey the above.

B. Math examples:
TIME-INVARIANT:
TIME-VARIANT:

C. How to prove:
Let

If then the system is time invariant, otherwise it is time
variant.

VI. Linearity:
A. Description:

LINEAR: Obeys superposition principles (additivity and scaling).
NON-LINEAR: Does not obey superposition principles.

B. Math examples:
LINEAR:

NON-LINEAR:
C. How to prove:

Let

where a and b are constants

If then the system is linear, otherwise it is non-linear.

Impulse and Step Responses

The impulse response h(t) or h[n] is the output that a system generates when the input is an
impulse signal. The impulse response plays a key role in defining the system. Knowing the
impulse response of a system, one can find the output of any input signal through convolutions
or Fourier or Laplace transforms, which are seen later on in the course.

Similarly, the step response of a system s(t) or s[n] is the output generated from a step input
signal. This also provides us with valuable information about the system.

As we have learned previously, there is a derivative-integral relation between the impulse signal
δ(t), and the step signal u(t). The same can be said about the impulse and step responses of a
signal.

*Note that 𝛕 here is a dummy variable and that the final answer is in terms of t only.

Image file because the original seems to be lacking all kinds of jpeg:

Convolutions Defined

A convolution is a mathematical operation carried out between two signals. To understand
convolutions fully, one must have both graphical and mathematical intuition of the concept.

Convolutions come in handy when they are used to determine the output of a system y(t) or y[n]
to a given input x(t) or x[n]. This is done by performing a convolution between the input and the
impulse response of the system (hence why the impulse response is an important property to
know):

Convolution Steps

Mathematically, the convolution of the input signal and an impulse response is performed by first
shifting the impulse response, flipping it along the vertical axis, multiplying it by the input signal,
and, finally, integrating over the entire domain.

The equation for the convolution of an input signal, x(t), and an impulse response, h(t), is,
therefore, the following:

CT Convolution Example

Figure 1: We start off with two signals x(t) and h(t). Our aim here is to find the output of the
system, y(t). To achieve this, we will perform a convolution between x(t) and h(t). Graphically,
performing the convolution involves manipulating one of the signals while keeping the other one
in place. It does not matter which signal is manipulated and which one is kept static due to the
commutative property of convolutions. For the purpose of this example (and in accordance with
the mathematical description given above), h(t) will be manipulated and x(t) will be the static
signal.

Figure 2 (shift): We start by replacing the t-axis by the τ-axis. The τ variable here is a temporary
(dummy) variable. We use it during the convolution operation, but the final answer must not
contain τ. The static signal is kept as x(τ) while the manipulated signal becomes h(t+τ). Once the
t-axis is replaced, the t-variable translates into a shift along the τ axis. For example, if a point
was on coordinate 0 of the t-axis, it comes out as a -t on the τ axis. A point that was 1 becomes
1-t (or -t+1, as shown in the figure) and so on. Note that it is possible to shift in the other
direction (+t) but by convention, shifting by -t is used here.

Figure 3 (flip): The manipulated signal h(t+τ) is transformed into h(t-τ) by reflecting it along the
vertical axis. Graphically, the τ-coordinate of each point of the manipulated signal is multiplied by
-1. For example, a coordinate of 1-t becomes -1+t (or t-1, as shown in the figure).

Figure 4 (multiply and integrate over the first interval): By choosing a value of t, the
manipulated signal is anchored on to a fixed location on the τ-axis. We consider different ranges
of t-values and, for each, we perform the multiply-and-integrate step of convolution. For the first
interval, t < 1, we observe graphically that there is no overlap between the signals.
Mathematically, this translates into a zero multiplication which results in a final answer of y(t) = 0
for t < 1.

Figure 5 (multiply and integrate over the second interval): For 1 ≤ t ≤ 2, part of the
manipulated signal, h(t-τ), falls in the non-zero interval of the static signal, x(τ). We thus perform
multiplication and integration over the common interval. Graphically, this could be done by
finding the area of the shape that results from multiplying the signals. Mathematically, the
answer could be found by evaluating the integral with the bounds of integration set to the
overlapping interval. In this case, the lower bound is fixed (1) and the upper bound is variable
(t).

Figure 6 (multiply and integrate over the third interval): When 2 ≤ t ≤ 3, the manipulated signal
fully overlaps with the static signal. The convolution output can be calculated by either
graphically finding the area of the shape resulting from multiplication, or by evaluating the
integral with both bounds being in terms of variables (t and t-1)

Figure 7 (multiply and integrate over the fourth interval): Similarly to what was seen in figure 5,
there is partial overlap between the signals over the interval 3 ≤ t ≤ 4. The difference here is that
the upper bound is fixed while the lower bound is variable.

Figure 8 (multiply and integrate over the fifth interval): Just as in figure 4, there is no overlap
between the signals over the interval t > 4. As such, the output evaluates to zero over this
interval.

Figure 9 (resulting output signal): From the answers found in each of the intervals (figures 4
through 8), the final output, y(t), is constructed as a piecewise function.

Comment on DT Convolution

In the case of discrete signals, convolution is simpler to perform. Instead of an integral, the
output signal, y[n], is given by the following equation:

Graphically, this results in the multiplication of the values of each “stem” of the discrete signals
(the input signal and the impulse response) at each “frame” as the manipulated signal, h[n-k],
slides past the static signal, x[n]. For each of these frames, the products of each multiplication
are summed to form the stem of the output at each discrete time point, n.

Models and Systems

Modelling is a practice used to approximate a certain system. As a rule of thumb, the
simplest model that can adequately represent the system is chosen. This is known as
Occam’s Razor. Ordinary Differential Equations (ODEs) are a common tool used to model
certain LTI systems (such as those covered in this course).

Ordinary Differential Equations

General form (for BIEN 350):

We will use the following class example:

Solving using the yp/yh method from MATH263:
1. Find the roots of the polynomial

Note: A system is stable only when all of the roots of the polynomial have a negative
real part.

2. Using the roots found, determine the general form of the homogenous solution yh

3. Using x(t), find the general form for the particular solution yp

4. Find the first and second order derivatives for yp (generalized) then plug them into the
original ODE to find the full form of yp.

5. Merge the homogeneous and particular solutions (y = yh+yp)

6. Plug in the initial conditions to get rid of the coefficients in the yh part of the solution

Zero-Input and Zero-State Method for BIEN350

This method is used for LTI systems only. Instead of breaking the solution into yh and yp, we
use . Zero-input () is when x(t) = 0, but the initial conditions are
non-zero. Zero-state is when the initial conditions are equated to zero, and x(t) is
non-zero.

To solve an ODE using this method:
1. Find the roots of the characteristic polynomial

2. Find the general form for which is the same as the yh from general form

3. Plug in the initial conditions to find the coefficients of

4. Find the general form of yp from the input

5. Find the first- and second-order derivatives for yp (generalized), then plug them into
the original ODE to find the full form of yp

6. Write the zero-state solution as a linear combination of the general form of the
homogenous solution and the full particular solution

7. Using initial zero conditions, find the coefficients of the yh component inside the
zero-state solution

8. Combine zero-input and zero-state solutions to form the final solution

Note: The main difference between these two approaches is when to plug in the initial
conditions of the system. For the zero-input/zero-state method, plugging in happens to
and individually, and both solutions are combined at the end. The method which uses yh

and yp involves combining both solutions and then plugging in initial conditions.

The zero-input response solution forms are summarized in the following table:

The zero-state response solution forms are summarized in the following table:

Solving a Circuit Problem

1. Identify the input and output of the system.

2. Apply one of the two fundamental circuit laws:
a) Additivity of voltages (Kirchhoff's Voltage Law):

b) Junction law (Kirchhoff’s Current Law):

3. Write down the voltage or current equation for each electrical component:
Resistor:

Inductor:

Capacitor: or

4. Plug in the component laws into the equation generated by step two.

5. Simplify the equation so that the only variables it contains are the input, the output,
and their derivatives.

6. Solve the resulting ODE.

Note: In physiological modelling, circuits are often used to represent physiological systems.
It is common to see voltage representing pressure and to see current representing flow
quantities (this is discussed further in BIEN462).

Introduction to Difference Equations

In nature, most systems exist as continuous time systems. On the other hand, computers
and electronics are digitized systems that operate in discrete time. Thus, there is a need to
discretize those CT systems. Discretization, the process of approximating the CT system as
a DT system, can be done through one of the following ways:

A) Forward Euler Method: where h is the time-step used in the
approximation.

B) Backward Euler Method:

Solving Difference Equations

Overall, there exists some similarity in the general approach for solving CT ODE’s and DT
difference equations (DEs). When solving LTI DT systems, we assume that the input starts
at n=0 and that when n<0, x[n] = 0. Thus, when given conditions for n<0 such as y[-1], y[-2],
etc. one can find the zero-input response of the system. In this case, the given conditions
are known as initial conditions. However, conditions can sometimes be given as y[0], y[1],
y[2], etc. These conditions are known as auxiliary conditions. In this case, when applying
the conditions, one cannot assume that x[n]=0. Hence, the answer found would not be a
zero-input solution. As such, the approaches for solving a DE when given initial conditions
and solving a DE when given auxiliary conditions differ.

Steps to solve a DE:

A) Given initial conditions: (Use zero-input/zero-state approach)

Example:
1. Find the N roots of the characteristic polynomial:

2. Using the roots, determine the general form of the homogeneous solution:

3. Apply the initial conditions to find the coefficients of the zero-input solution (in the
case of multiple roots, we must solve a system of N equations with N unknowns to
find the unknown coefficients):

4. Find the particular solution:

5. Plug the values into the DE to find the full particular solution:

6. Write the zero-state solution as a linear combination of and :

7. Use the relations to find the zero-state solution at
n=0, 1, …, N-1:

8. Using the zero-state solutions at n=0,1, …, N-1, find the unknown coefficients of
the zero-state solution:

9. Combine the zero-input and zero-state solutions to obtain the full solution:

B) Given auxiliary conditions (you must use yh/yp method)
1. Find the N roots of the characteristic polynomial
2. Using the roots, find the general form of the homogeneous solution
3. Find the particular solution
4. Plug the values into the DE to find the full particular solution
5. Combine both the homogeneous solution and the particular solution
6. Plug in the auxiliary conditions to find the unknown coefficients in the yh part of the

solution to get the final answer

Table for particular solutions:

Modes and Poles
Discrete time systems are stable when their poles lie within the unit circle (these are
highlighted in green below). Unstable systems have their poles outside the unit circle (these
are highlighted in blue below). If a system’s poles lie on the unit circle, the system is said to
be metastable (these are highlighted in red below). The poles of a system, , are obtained
by solving the characteristic polynomial, as described above. They are values on the
complex plane that define the modes of the system. The modes of the system are then given
by , allowing it to repeat indefinitely (recall that, in the case of discrete time systems, n is
the time variable). The modes define the behaviour of the system. For example, if a pole is
less than one (within the unit circle), as n grows, the value of the function (given by the
modes) will tend toward zero (in other words, it will be stable). On the following diagram, the
X’s represent the poles, while the graphs surrounding the unit circle represent the modes.

Eigenfunctions
An eigenfunction is a family of special functions such that when it is passed as an
input to a given system, the output is that same function multiplied by a constant
known as an eigenvalue. The relation below illustrates this point:

Input = Eigenfunction
→ Output = Eigenvalue X Eigenfunction

Example:

Consider the following system:

We can find that the function is an eigenfunction of the system:

where the constant s is the eigenvalue

Thus, given an input of , one can find the output using the
eigenfunction method:

(Splitting up the input using Euler’s formula)
Now that the input is in the form of eigenfunctions, we find the eigenvalues (a = 3j
and a = -3j) and write the output as the following:

To verify that the output is the same as the derivative of , we multiply the
numerator and denominator of y(t) by 2j:

Transfer Functions
In general, each system has its unique transfer function which contains information
on how the system maps the input to the output:

For CT systems:

For DT systems:

Once the transfer function of a system is found, the output can be mapped from the
input using the following relations:

where

where

Thus, the general approach to find the output y from the input x needs the following
steps:

1- Write the input as a sum of the eigenfunctions ()
2- Find the transfer function of the system
3- Plug in the value of s into the transfer function to give the eigenvalue
4- Multiply the eigenfunction by the eigenvalue to get the output

The first step is usually the most challenging. Many different techniques can be used
to write the input in the form of eigenfunctions (Fourier Series, Fourier Transform,
Z-Transform, Laplace Transform).

Deriving Transfer Functions from ODE’s and DE’s

Given an ODE in the form:
The transfer function of the system can be written as the following:

For DT systems, given

Transfer Functions and Sinusoidal Input

When the input to the system is a sinusoid (sine or cosine), there is no need to
convert the signal to a sum of eigenfunctions (step 1). Once the transfer function is
found, the output can be simply calculated as follows:

For CT systems:

For DT systems:

Complex Exponential Signals
Periodic signals (for example,) can be expressed as functions of periodic
exponential signals with imaginary exponents through the Fourier series. Aperiodic signals with
finite energy, meaning that they don’t go to infinity (for example,), can also be
expressed as functions of periodic exponential signals with imaginary exponents. However, in
such cases, the Fourier transform is used. This will be discussed in upcoming lectures.

The smallest real, positive value of T for which holds is the fundamental
period of the signal x(t). For periodic signals such as , , and , the

fundamental period is . Here, is the fundamental frequency.ω
0

The Fourier Series
When signals are represented using a series of complex exponentials with imaginary exponents
as follows, this is called the Fourier series representation of the signal.

The “k” in the equation above is the harmonic. When k=0, that component of x(t) is constant. For
, we refer to the “first harmonic” component of the signal (also known as the

fundamental harmonic). The pattern continues with increasing absolute values of k.

Sinusoidal functions can be quickly converted to their Fourier series equivalents by using
Euler’s relation. For example, given the signal , we can use Euler’s relation,

that is, , to obtain the Fourier series representation of the signal:

. In this case, the fundamental frequency is 3. We can then start
looking at defining the coefficients “ak” of the Fourier series. As we can see, in this example,
there is only a term involving the fundamental frequency. This will be the term associated with

. Looking at the coefficient of the pair of exponential terms in parentheses, we can see

that . Finally, we can say that .

In the case of more complex signals (for example, see below), it is important to keep track of the
fundamental frequency. Note that, here, all other signal frequencies are multiples of , making
it the fundamental frequency.

However, consider the case where, instead, we make the following very small change:

Suddenly, the fundamental frequency becomes !

Fourier Coefficients as Complex Numbers
The Fourier coefficients are complex numbers. They can be written in both cartesian and
polar forms. Very often, we tend to graph the magnitude of the coefficient alone and the phase
alone.

We notice that for any real signal, opposite Fourier coefficients will always be complex
conjugates, which implies the following:

If the signal is real even, then the imaginary part of all Fourier coefficients vanishes to zero and
the coefficients are all pure real, as a result:

If the signal is real odd, then the real part of all Fourier coefficients becomes zero and the
coefficients are either pure imaginary or zero (if the imaginary part is already zero):

The above two equations are the most important equations of the lecture. The analysis equation
allows us to take the signal x(t) and obtain the Fourier series coefficients. Conversely, the
synthesis equation allows us to take the Fourier series coefficients ak and obtain the signal.

Recall that here, .

Properties of the CTFS

Convergence of a Fourier Series

Convergence implies that we can represent a signal using a Fourier series. For a signal to
satisfy this, it must be periodic and one of the following:

1. Continuous (e.g. cosine signal)
2. Discontinuous but with finite energy over each period (e.g. a square wave):

3. Satisfies All 3 Dirichlet Conditions:
a. Must be absolutely integrable

Counter example:
b. In any one of the periods there must be a finite number of discontinuities

Counter example:

c. In any one of the periods there must be a finite number of oscillations:

Counter example:

Fourier Series and Systems

Suppose an input signal for a certain system x(t) has Fourier Series Coefficients and the
output signal y(t) has fourier series coefficients . The system’s transfer function is
used to map from to :

Knowing that the fourier coefficients and the transfer function are complex numbers,

Reminder: The transfer function can be found from the impulse response h(t) using the following
formula:

We will find out later that the transfer function is the Fourier Transform of the impulse
response.

Time and Frequency Domains:

In BIEN 350, we examine signals in 2 different worlds. The original signal is said to be in the
time domain. It is a function of time, which is plotted on the horizontal axis. In other words, the
signal depicts an evolution through time. It is a depiction of the frequencies of the signal. In the
case of a periodic signal, the frequencies are visually noticeable. For example, consider a signal
with a period of 0.5 seconds. It completes two full oscillations per second (two Hertz, Hz). This
signal would be depicted in the frequency domain by two impulse functions mirrored around the
vertical axis at -2Hz and 2Hz. So far, we’ve seen that Fourier Series give rise to the Fourier
Coefficients, which is a discrete value representation of a signal in the frequency domain (works
only for periodic CT signals). Other tools that are used to move between those domains are
Fourier Transform, Laplace Transform, Z-transform and their inverses.

Note: The inverse of the Fourier Series is the Synthesis Equation

From Fourier Series to Fourier Transform
Fourier Transforms are used mainly for aperiodic signals. To better understand the difference
between Fourier Series and Fourier Transforms, one must examine periodic signals. Consider
the signal below and its Fourier Series at the lowest fundamental period (1 square cycle):

As the fundamental period increases (2 squares, 3 squares, 4 squares…), we observe 2 things:
1) The resolution of the frequency domain increases
2) The amplitude of the individual spikes decreases to accommodate their increasing

frequency.

As the fundamental period approaches infinity, the resolution of the frequency domain becomes
even more fine until they become CONTINUOUS. A Fourier Transform is thus the application of
a Fourier Series on an infinite fundamental period which gives rise to a continuous
Frequency domain as opposed to the discrete Frequency domain of the Fourier Series.

https://www.semanticscholar.org/paper/Power-Spectrum-and-Correlation-9.1-Power-Spectrum/4311b940deedd25ee1654e855885a9c49efc1bd8/figure/2

https://www.semanticscholar.org/paper/Power-Spectrum-and-Correlation-9.1-Power-Spectrum/4311b940deedd25ee1654e855885a9c49efc1bd8/figure/2

From Signal to Fourier Transform
The Fourier transform of the signal is given by . Conversely, the signal

can be defined as the inverse of the Fourier Transform: . Overall, the

Fourier Transform pair is written as . We can transition from the signal to the
Fourier Transform of the signal by using the analysis equation (shown below). Conversely, we
can transition from the Fourier Transform of a signal to the signal itself by using the synthesis
equation (shown below).

Fourier Transform Convergence
The convergence conditions are similar to those of the Fourier Series, albeit that not any
continuous signal can have a Fourier Transform:

1. The signal has finite energy over the entire time domain:

2. The signal satisfies All 3 Dirichlet Conditions:
a. Must be absolutely integrable
b. In any one of the periods there must be a finite number of discontinuities
c. In any one of the periods there must be a finite number of oscillations:

General Steps to Solving a Fourier Transform Problem

Given a certain signal, we would like to find the Fourier Transform:
1- Check For Fourier Pairs that already exist in the table

2- If step 1 fails, check for transformations that might lead to one of the fourier pairs in the table
(using properties or FT)
3- If step 2 fails, use the analysis equation
4- At the end, we obtain a complex number. Often, the question will ask you to find/graph the
amplitude and phase of this complex number. If the complex number involves several terms,
you can find magnitude and phase for each then use the basic operations of complex numbers
to merge them together and get the global magnitude and phase.

Properties of Fourier Transform

Fourier Transform Pairs

Defining Frequency Response
Simply put, the frequency response is the impulse response in the frequency
domain. This allows us to map the input in the frequency domain using the following formula:

Some of the methods used to find Frequency response:
1. Taking the fourier transform of the impulse response
2. Extracting it from an ODE
3. Complex impedances (given a circuit)
4. If the transfer function H(s) is already given, we can find the frequency response by simply

replacing s with to get the frequency response
5. Experimental/Practical Method by passing into the system different sinusoidal inputs of

different frequencies.

Being an imaginary number, the frequency response has a magnitude and a phase, which can
be plotted against the axis to show the response of the system to different frequencies.

For a frequency response to exist, a system must be BIBO stable, meaning that

Partial Fraction Decomposition
1. Factorize the denominator
2. Write the denominator as a sum of fractions where each fraction has its numerator as an

unknown constant(s) and the denominator as one of the terms.The table below shows
the decomposition general form for each type of factor in the denominator:

https://tutorial.math.lamar.edu/classes/calcii/partialfractions.aspx

3. Using common denominator, combine all the terms together into 1 term

https://tutorial.math.lamar.edu/classes/calcii/partialfractions.aspx

4. Either by grouping like terms in the numerator or by plugging in values for the variable x,
establish a system of equations that allows us to find the values of the unknowns
A,B,C...

Filtering and Ideal Filters

A filter is a system that takes the frequencies that make up the input signal and either amplifies,
attenuates, conserves, or deletes each frequency. The ideal filter is a filter where certain
frequencies are kept the same while all other frequencies are removed. Below are the 4 types of
ideal filters:

A) Low Pass Filters: Only frequencies lesser in absolute value than the cutoff frequency are
retained.

B) High Pass Filters: Only frequencies greater in absolute value than the cutoff frequency
are retained.

C) Band Pass Filters: All frequencies between the two cutoff frequencies are retained.

D) Band Stop Filters: All frequencies are retained except those between the two cutoff
frequencies.

Non-Ideal Filters: In the case of non-ideal filters, the following phenomena can be found:
1- Cutoff is non-discrete
2- Oscillations along the frequency axis in both high and low modes

Examples of non-ideal filters: Butterworth and Chebyshev Filters

ODEs and Frequency Response
Recall from before that given an ODE in the form:

The transfer function of the system can be written as the following:

Finding the frequency response is very similar, we just replace the s with :

Complex Impedances
The method of complex impedances is used to solve circuit problems that involve frequency
response. This involves using impedance (Z), which is the resistance to AC voltage (basically
resistance in the frequency domain). Below is a general approach used to solve complex
impedance circuit problems:

1. Transform the components of the circuit into ‘special’ impedance resistors. The impedance
of these imaginary resistors can be calculated based on the nature of each component:

Resistor:

Capacitor:

Inductor:
2. Write the input/output relation using one of Kirchoff’s laws. Denote all voltages and currents

in the frequency domain (e.g. use and instead of and)
3. Treating the impedances as resistances, we can do any of the following tricks to isolate input

and output:

a. Ohm’s law of a component:

b. Equivalent impedance of components in series:

c. Equivalent impedance of parallel components:
d. Voltage Divider Trick: When there are components that are only in series, this special

relation arises between the total voltage and the voltage of one of the components:

4. Reduce the expression to the form to find

Frequency Domain for DT signals
Compared to CT signals, there are some differences that we observe when dealing with the
frequency domain of DT signals:

1. The frequency domain representation of a signal x[n] is instead of
(which is used for CT signals).

2. For CT signals, if we vary the frequencies in , we can always get different

values for . However, in DT signals, if we vary the value of in , the
frequency domain repeats itself at every frequency multiple of . For example:

. Hence, the frequency domain of a DT signal has
a period of .

3. The transfer function of a CT system is H(s), whereas the transfer function of a DT
system is H(z).
Spoiler Alert: You will see later on in the course that and .
For this chapter and the ones before it, we consider only the case where and

. Hence, the transfer functions are for CT signals and for DT
signals.

The Half-Angle Hack
Very often in BIEN350, when simplifying our answer, we run into the following type of
expression:

where is any value

The half-angle hack reduces this expression to the following:

Why use this trick? Right now, we have the answer as a product of 2 terms. One of those
terms can be reduced to a pure real number and the other can be reduced to a complex
number of magnitude 1. This is extremely helpful in finding the magnitude and phase of our
answer.

(Using Euler’s Formula)

A slightly more complicated case in which we can use this hack is the following:

(Using Euler’s Formula for sine this time)

(Substituting for j)

DTFS Synthesis and Analysis Equations

Due to the periodicity of DT signals, DTFS coefficients are periodic with a fundamental
period of N as follows: .

Properties of the DTFS

DTFT Synthesis and Analysis Equations

Properties of the DTFT

DT Filters
Discrete time filters are similar to those used in continuous time. However, DT filters are
periodic with a periodicity of and, therefore, repeat themselves. A lowpass filter, for
example, retains the signal between cutoff frequencies around the origin and every
frequency multiple of . Often, only one period is illustrated, leading to figures almost
identical to those shown in lecture 9. The only difference is the vertical axis labelling, which

is in the DT case instead of in the CT case.

Magnitude and Phase Response

The magnitude response is the way in which the input signal’s magnitude is changed to give
the output signal’s magnitude. Similarly, the phase response is the way in which the input
signal’s phase is changed to give the output signal’s phase.

Given the input frequencies (spectrum), or , we can use the magnitude

response, or , and the phase response, or , to
compute the magnitude and phase of the output signal’s spectrum:

Note that the magnitudes are multiplied and that the phases are summed.

Linear phase is preferable, as it results in a uniform shifting of the entire signal. Nonlinear
phase leads to shifting different frequencies in different ways. This leads to a scrambled
output signal.

Group Delay Definition

Group delay is the shift in the time domain that a certain frequency of a signal experiences.
We denote it mathematically as . In the frequency domain, the group delay is the
derivative of the phase response. It quantifies “how linear” the phase response is; a constant
group delay implies linear phase response.

Steps to Obtain the Group Delay

Consider the following system:

1- Find the Frequency Response of the system

2- Find the phase of that frequency response:

3- Take negative of the derivative of the phase with respect to to find the group delay:

This means that for this example:
A) All frequencies in this signal will be amplified by a factor of 2
B) All frequencies in this signal will be shifted in the time-domain by 3 units to the right.

In many other examples, the group delay (and the magnitude response) can differ among
different frequencies, which causes different shifts in the time domain.

Important Example: Explained

To simplify the text, henceforth, the plot in the center left will be plot A, that in the bottom left
will be plot B, that in the top right will be plot C, that in the center right will be plot D, and that
in the bottom right will be plot E.

The input signal is composed of 3 different sub-signals , , and , each of which has a
certain frequency band. It is important to know which sub-signal corresponds to which
frequency “bubble” in plot A. We can do this by comparing the apparent frequencies of each
of these bubbles to the frequencies presented in each equation. Here, the leftmost bubble
corresponds to the highest-frequency equation: . The middle bubble corresponds to the
lowest-frequency equation: . Finally, the rightmost bubble corresponds to equation .

Plot B then shows us the frequencies present in the overall signal. The peaks at
correspond to , for example. Plot C, in turn, presents us with the way in which the
magnitude of the input signal is amplified given the component frequencies. It is the
magnitude response. Plot D, similarly, presents us with the way in which the phase of the
input signal is shifted given the component frequencies. It is the group delay, which was
found by taking the negative derivative of the phase response (not shown in any of the
diagrams).

The output signal, shown in plot E, can then be constructed using the information provided in
plots A, C and D as follows:

For :
- Magnitude response is approximately 1.2 → is amplified by a factor of 1.2
- Group delay is 150 → is shifted 150 time units to the right

For :
- Magnitude response is 2 → is amplified by a factor of 2
- Group delay is 10 → is shifted 10 time units to the right

For :
- Magnitude response is close to zero → is almost fully attenuated
- Group delay is -50 → is shifted 50 time units to the left

Bode Diagrams Defined
From previous chapters, you might have noticed how difficult it can be to plot magnitude and
phase responses on to-scale drawings. Bode Diagrams are a method for plotting and
visualizing magnitude and phase responses using logarithmic scales for the frequency range
and the magnitude response value.

A bode diagram of a system consists two plots:
1) Bode Magnitude Plot: along a logarithmic scale of
2) Bode Phase Plot: Simply the phase response on a logarithmic scale of

Advantages:
1) A larger range of frequencies can be analyzed.
2) The logarithm property allows us to sum different subcomponents of a complicated

frequency response magnitude instead of multiplying them, thus simplifying
calculations.

First-Order Terms
A first-order term is a term that has one of the following formats:

(where is a constant term known as the natural frequency)

When plotting the Bode Diagrams for each of these cases, we must consider three different
regions along the frequency axis and calculate the Bode magnitude and phase in each of the
regions. From those calculations, the Bode Plots can be constructed. Feel free to fill in the
following table when constructing your own Bode Diagram.

Region Bode Magnitude: Bode Phase: (same as usual phase)

Example plots for each of the four possible basic options listed above are shown below.
Remember that all frequency axes are scaled logarithmically.

Second-Order Terms
In the context of second-order terms, we introduce the damping coefficient, . This term
appears when the system could be defined by complex poles. There are four possible cases
when dealing with the damping coefficient:

- When , there is critical damping.
- When , there is underdamping and oscillations appear.
- When , there is overdamping and there are real poles.
- When , the system is unstable.

The general form of the second-order term is one of the following:

(numerator form)

(denominator form)

When the system is underdamped, oscillations take place. Additionally, when

a resonant peak forms at the resonant frequency:

At the resonant frequency, we observe either a small dip or peak in the Bode Magnitude
Plot, where:

(numerator form)

(denominator form)
When plotting the Bode Diagrams for a second-order term, we must check the 3 regions that
are checked usually in First Order Terms in addition to the resonant frequency ().

For example, given a “numerator” form (shown below), we can draw a corresponding Bode
diagram:

Given a “denominator” form (shown below), we can draw a corresponding Bode diagram:

A Word on Constants
Drawing Bode diagrams for contents is fairly easy, yet frequently neglected by students on
exams.
The Bode Magnitude for a constant k is a horizontal line at .
The Bode Phase is always zero for the constant term.

General Approach to Solving a Bode Diagram Problem
The most common problems in this chapter can either:

A) Provide you with a complicated frequency response and ask for the Bode
Diagrams

B) Provide you with Bode Diagrams and ask you to match the appropriate Bode Plot
from a given set of options (Multiple Choice Question)

For the first type of problems:
1) Break down the frequency response into simpler terms: .

Polynomial Factorization and Partial-Fraction Decomposition are common techniques
used to complete this simplification step.

2) Classify each term as either 1st order, 2nd order, or a constant and draw the Bode
Plots for each term using the rules for their respective category.

3) Add the plots for all individual terms (a good approach is to start from and
move in increasing frequency).

There is no general approach to solving the second type of problems, as they require more
intuition from the student. However, it is important to keep track of the following:

1) The natural frequencies of each of the terms in the different options for the frequency
responses.

2) The initial value of the Bode Plots when (usually easy to calculate for each
option).

3) The final trend in the Bode Plots when the frequency becomes larger than all natural
frequencies (this should be easy to determine for each option).

4) The cancelling effect that can take place between 2 terms (e.g. if a term has a slope
of +20 and the other term has a slope of -20 and their natural frequencies are close
to each other).

Introduction to Sampling and Reconstruction
Sampling is the process of transforming a CT signal to a DT signal. This is done by
selecting certain points from the CT signal at a constant sampling rate .We can think of
this operation as a convolution between the CT signal and a train of impulses known as the
sampling function.

https://signalprocessingsampling.weebly.com/

Aliasing is a phenomenon that occurs when we sample at a very slow rate and start losing
some of the frequencies found in the original CT signal.

Thus, when sampling, one must take into account the frequency domain of the CT signal
and in particular, the highest frequency that exists in this signal, also known as the Nyquist
Frequency . To avoid aliasing, we must choose a sampling frequency so that

http://mriquestions.com/uploads/3/4/5/7/34572113/6443188_orig.gif

https://signalprocessingsampling.weebly.com/
http://mriquestions.com/uploads/3/4/5/7/34572113/6443188_orig.gif

Reconstruction is the process of transforming a DT signal into a CT signal. This is done
through interpolating the discrete points and joining them in an intelligent way to create a CT
signal. The ‘joining’ process is usually done through passing a filter that helps us fill in the
gaps between the points of the DT signal. Using a filter can also allow us to remove any
‘unwanted’ frequencies at the edge by adding a cutoff. Reconstruction can also have its own
frequency .No aliasing happens during reconstruction.

https://www.hebergementwebs.com/analog-communication-tutorial/analog-communication-sampling

Why Sampling?
Computers and digital electronics handle data in discrete bits. It is also impossible for a
computer to capture and store a CT signal from nature, as it would require infinite memory
for the data (e.g. the computer will need to know the signal at t=0.1s, 0.01s, 0.001s….).
Hence, we need to limit the time frequency at which the data is stores, and this is done
through sampling (e.g. using , we would only store the points at t=0.1s,t=0.2s,
t=0.3s ….).

Note on the Notations for this Chapter
This chapter will deal with frequencies both for DT signals and CT signals. To avoid
confusion, we use for the frequency domain of CT signals and for the frequency
domain of DT signals.
To move between and , we use the simple relation , where T is either the

sampling or reconstruction period depending on whether we are sampling or
reconstructing.

Sampling and Reconstruction in the Frequency Domain Explained Through an
Example
Given the spectrum , , and , the amplitude at for the input
spectrum:

https://www.hebergementwebs.com/analog-communication-tutorial/analog-communication-sampling

The plots shown above can be explained as follows:

Plot 1
This is the input spectrum, the range of frequencies being introduced to the system.

Plot 2
This is the sampled signal’s spectrum. It is the result of convolving and the impulse
train sampling function, :

Plot 3
This is the discretized version of the sampled signal’s spectrum. is always mapped to

, and is mapped according to . Here, this mapping corresponds to

.

Plot 4
This is the discretized sample signal’s spectrum after passing through an arbitrary discrete

filter, (shown below). Note that this is an optional step.

Plot 5

This is the reconstructed output spectrum that results from multiplying with the
following continuous lowpass reconstruction filter, . Note that, here,

.

Impulse Invariance Method
Impulse invariance is a technique used to turn CT systems of finite frequency bandwidth
into DT systems. It follows the steps below:

1) Find the impulse response of the CT system (sometimes given)
2) Use the following relation to find the impulse response of the DT system:

where T is the sampling period.
3) Using a fourier transform, or any other technique, we can find the frequency

response of the DT system.
Note: just as in sampling for signals, we must choose a sampling rate that is large enough so
that all frequencies in the CT system are captured (i.e. to avoid aliasing).

Practical Sampling
Practical sampling is a realistic version of sampling and reconstruction that allows us to tune
the accuracy of the sampling. Our aim here is to capture a CT signal in nature and represent
it in the computer’s environment. At its coarsest level, we find the zero-order hold: the input
signal is converted to a series of “steps”.

This is done using a periodic sampling function defined as:

In the frequency domain, this sampling function takes on the following shape:

To eliminate the error created by the sampling function, reconstruction is done using the
following reconstruction filter. Notice how the filter keeps the peak at 1, boosts the
frequencies that are lower than those in the ideal filter, and completely cuts off the
frequencies beyond those permitted by the ideal filter.

We can then expand this concept to the first-order hold, which involves linear interpolation
(instead of “steps”), or even the third-order hold, which involves cubic spline interpolation.

Resampling
Resampling is a process that modifies the sampling rate of an already-sampled signal in
Discrete Time.

Downsampling involves the following procedures in the time-domain:
1) ‘Decimating’ data points of a DT signal at a rate of M
2) Rearranging the data points so that they fill in the gaps. For example, if M is 10, then for

every 10 consecutive data points, only one is kept and then the surviving datapoint at
t=10s is moved to t=1s, the datapoint at t=20s is moved to t=2s and so on.

In the frequency domain, this results in the following:
1) Stretching the frequency spectrum by a factor of M
2) Downscaling the original amplitude of each frequency by a factor of M (i.e. multiply by

1/M)

If the downsampling rate M is too high, this might also result in aliasing since decimating too
many points would lead to losing certain high frequencies from the original signal. Hence,
when sampling is done followed by downsampling, the following relation must be satisfied to
avoid aliasing:

Example of Downsampling with M=4

http://mubeta06.github.io/python/sp/multirate.html

.
Upsampling is the opposite of downsampling. It involves the following steps in the time
domain:

1) Space out the existing data points L spaces apart (social distancing).
2) Interpolate between the original data points to fill in the data for the newly created

points.
In the frequency domain, this results in the following:

1) Compressing the frequency spectrum by a factor of L
2) Multiplying the amplitude of each frequency by a factor of L.

Aliasing never happens during upsampling.

https://www.divilabs.com/2014/07/upsampling-interpolation-of-discrete.html

http://mubeta06.github.io/python/sp/multirate.html
https://www.divilabs.com/2014/07/upsampling-interpolation-of-discrete.html

Resampling in the Frequency Domain Explained by Examples
Using ,

Notice how the amplitude of the downsampled discretized signal, , is

scaled by a multiple of .

What would have happened had there been aliasing? Recall that, to avoid aliasing,
we need . Consider the case where and :

We will have aliasing in this case. We can use an antialiasing lowpass filter to

remove aliasing at the expense of signal information by using . This is
called decimation.

Notice how using the appropriate discrete cutoff filter, , we force the input
spectrum to obey the rule. Then, when downsampling the modified

input spectrum, , we see that there is no aliasing. However, information is
lost relative to the original spectrum. You may be wondering: we lost information
either way, so, what’s the point? Remember that aliasing is specifically the loss of
information due to downsampling. By using a cutoff filter, we are removing certain
information intentionally to avoid overlaps, which may lead to a distorted signal.

As for upsampling, as mentioned previously, we never need to worry about aliasing
because we are adding new samples. As such, information cannot be lost due to
overlaps (as we are “adding space”, not “removing space”).

Consider the case where and :

Notice how the amplitude of the signal has been multiplied by a factor of . The

upsampled input spectrum, , now features more “space” for new samples to
be taken. In fact, the input spectrum has been sampled as if we had used

.

Introduction to the Laplace Transform
The Laplace Transform is a type of transform that maps a CT signal or impulse response of a
CT system from the time domain into a complex number space ‘s’ defined as . The
equation that defines this transform is the following:

Similar to the Fourier Transform, there is a table of Laplace Transform Pairs that makes the
conversion easier than solving the integral. In fact, the Laplace Transform is a generalization of
the Fourier Transform.

Why Laplace and not Fourier?
1) Laplace transform can be applied on signals and systems that otherwise do not have an

existing Fourier Transform (aperiodic non-dirichlet signals, unstable LTI systems, LTI
systems with non-zero initial conditions)

2) The Laplace transform can give us more information about the signal thanks to the 2
dimensional real-imaginary space it has . It can tell us about both
exponential and oscillatory behavior in the time domain. On the other hand, the Fourier
Transform only stores information about the oscillatory components of the signal/system
in the time domain. In other words, it only has a 1 dimensional space composed of the
axis.

The Region of Convergence
Since the formula for the Laplace transform is an improper integral, it may diverge in some
cases. Hence, only certain values of s will make the integral converge in those cases. The
range of values of s that make the integral converge are known as the REGION OF
CONVERGENCE (ROC). The region of convergence is a rectangular region that sweeps along
the real axis of the real-imaginary plane.

Usually, the Laplace Pair Tables provide the region of convergence for each transform. We can
also tell the region of convergence of a simple signal (1 pole) using the following methodology:

1) Find the value of s that ‘blows up’ the Laplace Transform expression. This value is
known as the pole.

2) If the signal is right-handed, the ROC is the half-plane that lies to the right of that pole.
Otherwise if the signal is left-handed, then the ROC is the half-plane that lies to the left
of the pole.

Below is an example for the ROC of 2 simple signals that have the same Laplace Transform
Expression, one right-handed and the other left-handed.

For a signal that has more than 1 pole, the following steps are used to find its ROC:
1) Separate the signal into simpler signals, each having 1 pole.
2) FInd each of those poles.
3) Find the ROC of each simple signal from its corresponding pole.
4) The ROC of the complex signal is the intersection of the ROC’s of the simpler signals.

The ROC for H(s) of an impulse response h(t) can also reveal some of the properties of a
system:

A) If the ROC is right handed (goes to), then the system is CAUSAL.
B) If the ROC includes the imaginary axis, then the system is BIBO STABLE.

Poles and Zeros
The Laplace Transform of any given signal/system can be written in the following form:

The values of s that cause the numerator to go to zero are known as the ZEROS.

The values of s that cause the denominator to go to zero (and hence X(s) to blow up) are the
POLES.
We use pole-zero maps to represent those points by simply plotting them in their respective
positions on the real-imaginary plane.
As mentioned earlier, poles play a key role in determining the region of convergence.
Note that in the case where a pole and zero are located in the exact same spot they cancel
each other.

Sketching Magnitude Response from Pole-Zero Map
The magnitude response can be quickly sketched from the pole-zero map. Take the following
map, for example. Recall that poles are indicated by X’s, while zeros are indicated by O’s.

Start at .

Look at the distances from this center point to every pole and every zero. Calculate with
the following equation:

Here, we get:

This gives us a starting point for our magnitude response sketch.

Next, move upwards along the imaginary axis. Roughly keep track of the distances from this
point along the imaginary axis to every pole and every zero.

First, consider the orange segment. We get closer to a pole and get further from a zero. As a
result, the magnitude increases.

Then, consider the pink segment. We get perpetually further from all poles and zeros, leading to
a decay down to zero.

Notice that this matches the MATLAB-generated plot!

Inverse Laplace Transform
The Inverse Laplace Transform has the following complicated form:

Note that in BIEN350, we are not required to solve this type of integral. Hence, to do inverse
Laplace, we always use the Laplace Transform Pair Table.

Properties of the Laplace Transform

Unilateral Laplace Transform
The Unilateral Laplace Transform is a variant of the Laplace Transform defined as the following:

The ROC of such a transform is always a right-half plane.
The Unilateral Laplace Transform is used ubiquitously in solving ODE’s due to the following
properties that it gives for derivative terms:

Solving an ODE Using The Unilateral Laplace Transform
Example:

1) Take the unilateral Laplace Transform of both sides of the equation. Pro tip: keep all the
initial condition and input function constants as variables until the very end.

2) Isolate for the term Y(s)

3) Break down the other side of the equation into Zero State and Zero Input Responses
(write it as a sum of both). A good way to do this is to set the term that came from X(s) to
zero and the surviving terms will make up the zero-input response. The terms that were
not included in the zero-input response are the zero-state response. Another approach is
to set the initial conditions to zero and collect the surviving terms to find the zero-state
response.

4) Take the Inverse Laplace of both sides of the equation. Y(s) becomes y(t) and the other
side of the equation is the answer as a sum of zero-input and zero-state responses

and .

(after fraction decomposition)

5) Combine both zero-state and zero-input solutions to get the final solution:

Z-Transform Introduction
The Z-Transform is a type of transform that maps a DT signal or impulse response of a
system from the time domain into a complex number space consisting of the real and
imaginary axes. The equation that defines this transform is the following:

where

We know beforehand that the DT Fourier Transform H(z), uses values of z that lie on the
UNIT CIRCLE of that plane (hence why the DTFT repeats itself at every 2π). The
Z-Transform allows us to generalize z to any point on the plane thanks to including the
radius term in the expression of z.

Unlike the Laplace Transform which focuses on the Cartesian coordinates, the Z-Transform
is oriented towards using polar coordinates.

Region of Convergence and Its Properties
Similar to the Laplace Transform, the Z-Transform might not converge for every possible
value of z. Hence, there exists certain regions of convergence for some Z-Transforms.

Unlike the Laplace Transform’s rectangular sweeping region of convergence, the regions of
convergence for Z-Transforms are disc-shaped.

The boundaries for this region are defined by the poles. Right-sided signals have a region of
convergence that starts at the outermost pole and expands OUTWARDS indefinitely.
Left-sided signals have a region of convergence that starts at the innermost pole and
expands INWARDS towards the origin (and may or may not include the origin). Signals that
are composed of both right-sided and left-sided signals have a region of convergence that
resembles a ring.

Recalling the Laplace Transform, a system is said to be stable if the Laplace Transform of its
impulse response includes the imaginary axis. In the case of Z-Transforms, the region of
convergence must include the UNIT-CIRCLE for stable systems.

Inverse Z-Transform
The inverse Z-Transform is defined by the following complex integral:

Solving the integral is out of the scope of BIEN350 and hence the Z-Transform pairs table
must be used to find inverse Z-Transforms. In most cases, the given Z-Transform in an
exercise is too complicated to find in the table and must thus be broken down into simpler
terms and then find the inverse Z-Transform of each. Many mathematical tricks come in
handy in these cases (e.g. partial fraction decomposition).

Finding the Magnitude Response from the Pole-Zero Map
Just like in the case of the Laplace Transform, the Pole-Zero map of the Z-Transform can be
used to sketch the system’s magnitude response. The procedure is essentially identical,
however, instead of starting at the origin and moving upward along the imaginary axis, start
at and move counterclockwise around the unit circle! Remember that for DT signals,
the magnitude response repeats itself every 2π. Note that the symmetry around π portrayed
below is a consequence of the poles and zeros only existing on the real axis in this specific
example. Such symmetry is not guaranteed.

Properties of Z-transform

Unilateral Z-transform
The unilateral Z-Transform is defined by the following equation:

This variant of the Z-Transform, along with the time-shift property are extremely helpful in
solving Difference Equations:

When solving DE’s using the Z-Transform, the same approach can be used as the one for
solving ODES with Laplace Transforms. The only difference here is the type of transform
being used.

Control Systems in General
Control systems regulate the function of certain devices and systems using control-loops.
The aim of a control system is to achieve the desired output of a system despite any external
and internal effects that impede it from achieving this. In most cases, control systems are
used to turn unstable systems into stable ones.

Open Loop vs. Closed Loop Systems

https://medium.com/@mustafamlokhandwala/open-loop-idiocy-vs-closed-loop-intelligence-256f6260763f

Open loop control does not involve any FEEDBACK from the output signal while closed loop
control features the feedback of the output signal to the control module. In other words, a
closed loop system has the ability to self-correct.

Glucose Regulation Example
Normally, hormones such as insulin and glucagon regulate the blood sugar level in the blood
thanks to a natural built-in control system in the body.

In the case of Type I Diabetes, the patient suffers from insulin deficiency, which renders the
natural blood sugar control system weak in some cases, hence the need for external
intervention.

One solution is using manual insulin injections, which resembles open-control, as the patient
injects themselves with a certain amount of insulin beforehand and expects the blood
glucose levels to drop.

A more effective solution is the insulin pump, which is a closed-loop controller that gathers
feedback in the form of measuring glucose levels in the blood. Based on those levels and
the target level of the patient, the controller can calculate and deliver the amount of insulin
needed in a continuous manner.

https://medium.com/@mustafamlokhandwala/open-loop-idiocy-vs-closed-loop-intelligence-256f6260763f

Meaning of each term:
- R(t): The target blood glucose level that the patient needs to reach (determined by

the physician.
- G(t): The measured glucose level of the patient’s blood.
- E(t): Simply the difference between the target and measured glucose levels, also

known as the error term.
- U(t): The control signal generated by the insulin pump (i.e. the amount of insulin

added)
- v(t): The patient’s natural built-in natural glucose regulation system. The input to this

system is the amount of insulin (and other factors as well), and the output from this
system is the real glucose concentration in the blood. This is a highly complicated
system and is often thought of as a ‘black box’. The aim of the insulin pump is to
control and stabilize this system.

- Y(t): The true value of the glucose concentration in the blood.
- N(t): All the noise that causes the discrepancy between the true value of the glucose

concentration and the measurement. This is mainly due to instrumentation error.
- The switch: The insulin pump has the option of being on standby and not delivering

any insulin (e.g. if the patient’s blood sugar is already low)

Main limitation of this control system: The pump only uses insulin, which only lowers blood
sugar, meaning it works in only 1 direction. If the patient experiences a sudden drop in
glucose levels below the normal benchmark, the insulin pump will not be able to help in any
way. Using a hormone that counters the effect of insulin (glucagon) will make this controller
better.

Proportional-Integral-Derivative Control (PID)

A PID Controller is a type of controller that uses information on the following to regulate the
system:

1) The magnitude of the error term (P)
2) The rate at which this error term changes (D)
3) The accumulation of this error term over time (I)

Each one of the mentioned terms has a controller coefficient (kp. kd, and ki). These
coefficients are design parameters that can be manipulated when tuning the controller.

Introduction to Block Diagrams
Block diagrams are graphical representations of systems. They can represent, for example,
parallel, series, and negative feedback systems. Note that the diagrams are extremely
similar in the continuous and discrete time cases. The signals simply differ by the
independent variable: t in the continuous case, and n in the discrete case. In the frequency
domain, the independent variable is s in the continuous case and z in the discrete case.

For parallel system block diagrams, the frequency responses of the individual elements
combine as follows:

(continuous time)
(discrete time)

For series system block diagrams, the frequency responses of the individual elements
combine as follows:

(continuous time)
(discrete time)

For negative feedback block diagrams, the frequency responses of the individual elements
combine as follows:

Note that in the negative feedback case, the product is called the loop gain.

Block diagrams (Laplace, Z) with HG (loop gain)
For the purposes of this course, we will assume all systems are CAUSAL. That means we
only need to worry about regions of convergence that are right-hand side planes (in the
continuous time case) or circular regions tending to infinity (in the discrete time case).

The goal of feedback is the stabilization of the system. The term can be tweaked,
changing the loop gain. Choosing an appropriate will stabilize the system. Consider the
case where , with , a constant.

The system, , becomes .

While the original system is not always stable, the feedback system is stable for . All
we need to do is pick an appropriate value of K!

Then, consider the following system:

If we used as was the case above, we would get the following corrected
system:

The poles for this new transfer function are the roots of , which must be
positive. Given that the system is causal, the ROC would not include the real axis which
implies that the system cannot be stabilized by a zeroth-order loop branch .

Instead, we should use ,

The new transfer function would emerge as:

The roots of the denominator for H(s) would be

Hence, it is possible for both of the roots of the polynomial to be negative given the
appropriate K1 and K2 values, which means that we need a first order feedback branch to
stabilize this second order system.

When we vary the value of K, we are actually moving the locations of the system’s poles.
The system is stabilized once we choose a value of such that the poles are all negative
on the real axis (in the continuous case) or within the unit circle (in the discrete case).

Root Locus Method
The Root Locus method allows us to evaluate the behaviour of closed-loop systems at
various values of K. Remember these key steps to handle any root locus problem:

1) Find G(s)H(s), where H(s) is the transfer function of the original system and G(s) is
that of the feedback loop.

Example:
2) Mark the poles and zeros of G(s)H(s) on the real-imaginary plane.

3) Start at poles

4) End at zeroes. If there are no remaining zeros, go to infinity.
5) For , look for segments of the real axis to the left of an odd number zeroes

and poles. Once the 2 traces come into contact, the 2 traces would both leave the
real axis and head either towards the zeros or infinity in a symmetric pattern. Note
that for the scope of BIEN 350, these diversions will be either in the shape of a circle
that loops back to the real axis, or vertical lines that go to

6) Perform the same procedure for

7) Using the criteria for system stability, determine K values for which the system is
stable. In other words, look for all the values of K when all the traces are inside the
unit circle for DT systems or in the negative left half-plane

Note: Each zero can only accept 1 trace coming from a pole.

